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Motivation

The Perceptual Ocean.

(Movie credit: NASA/Goddard Space Flight Center, Scientific Visualization Studio)
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Mathematical challenges

How to mathematically characterize structures that remain coherent for an
extended time span (such as ocean gyres and eddies)?

In other words: How to define what you can physically observe?

How to systematically, reliably, and efficiently extract these structures?

How to quantify the mass exchange between these structures and their
surroundings?

How to enhance/mitigate/control coherence?

Kathrin Padberg-Gehle Madrid · July 7, 2016 3 / 33



Concepts for analyzing flow structures

Geometric approach: detect barriers to particle transport
I invariant manifolds [Rom-Kedar, Wiggins, Mancho, Balasuriya, ...]

I Lagrangian coherent structures (LCS)
[Haller, Shadden, Lekien, Marsden, Beron-Vera,...]

Approximate set boundaries!

Probabilistic approach: detect minimally dispersive regions
I almost-invariant sets (spatially fixed)

[Dellnitz, Junge, Schütte, Froyland, Koltai, P., ...]

I finite-time coherent sets (moving)
[Froyland, Santitissadeekorn, Monahan, Bollt, Junge, P., ...]

Approximate sets!
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In this talk

Probabilistic approach

- Transfer operators and numerics

- Almost-invariant sets

- Functional analytic framework

- Finite-time coherent sets

- Clustering framework

- Examples and applications

- Conclusion and future research

Joint work with Gary Froyland, UNSW Australia
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Notation

Discrete dynamical system

T : M → M, M ⊂ Rd compact

Here: T diffeomorphism (not formally required!),

e.g. an autonomous flow map:

T (·) := x(τ ; ·),

where x(τ ; x0) solves ẋ = f (x), x0 = x(0) for fixed flow time τ ∈ R

A set A ⊂ M is T−invariant if

A = T−1(A).

M space of finite signed measures on M

Probability measure µ ∈M is T -invariant if

µ(A) = µ(T−1(A)) for all A ⊂ M.

Kathrin Padberg-Gehle Madrid · July 7, 2016 6 / 33



Transfer operators in dynamics

Define linear operator P :M→M

(Pν)(A) = ν(T−1(A)), A ⊂ M.

More relevant: P : L1(M,m) 	 with∫
A

Pf dm =

∫
T−1(A)

f dm, m Lebesgue measure

and for diffeomorphisms

Pf (x) =
f (T−1x)

| detDT (T−1x)|
.

P is the natural push-forward of densities under the action of T

Invariant density corresponds to fixed point of P, i.e. eigenfunction to
eigenvalue 1

Transfer operator or Perron-Frobenius operator

P is a Markov operator
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Numerical approximation of P

Consider T : M → M

{B1, . . . ,Bn} partition of M

Galerkin approximation of P with indicator functions on Bi , i = 1, . . . n, as
basis functions [Ulam 1960]

P represented by a sparse, stochastic matrix

Pij =
m(Bi ∩ T−1(Bj))

m(Bi )
≈ #{k : T (xi,k) ∈ Bj}

K
,

with test points xi,k , k = 1, . . . ,K uniformly distributed in Bi [Hunt 1993].

Fixed points of P converge to invariant
density of P as n→∞ for a very restricted
class of systems [e.g. Li 1976]

P is in general assumed to be a good
approximation of P
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Almost-invariant sets

µ preserved by T : M → M

A ⊂ M is almost-invariant if T (A) ≈ A, i.e.

µ(A ∩ T−1(A))

µ(A)
≈ 1

Application of transfer operator methods for almost-invariant sets:
I Study eigenfunctions of transfer operator P / eigenvectors of P to real

eigenvalues close to 1 [Dellnitz/Junge 1997/99, Deuflhard et al. 1998, Huisinga, Schmidt

2006],
I Consider eigenfunctions of the infinitesimal generator of P and its

discretization [Froyland/Junge/Koltai 2013]

I Consider eigenvectors of a transition matrix R of a reversible Markov chain
constructed from P [Froyland 2005; Froyland, P. 2009]

I Consider optimal partitions of a directed graph induced by P or R [Froyland,

Dellnitz 2003, Dellnitz et al. 2005]

I Applications in physical oceanography, dynamical astronomy, fluid mixers, oil
spills, epidemic spread,...

No uniform framework for deriving optimality criteria
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Proposed construction [Froyland, P. 2014]

Task: find nontrivial sets A,Ac

- that maximize

ρ(A) :=
µ(A ∩ T−1(A))

µ(A)
+
µ(Ac ∩ T−1(Ac))

µ(Ac)

- and are robust w.r.t. to perturbations

Construction: Use operator L dynamically similar to P, with L1 = 1

Functional representation of invariance condition A ≈ T (A):

L1A ≈ 1A (solution to eigenequation)

When
L := DεPDε/(DεPDε1)

where Dε is a diffusion operator then – under mild assumptions – L is
compact on L2(M, µ) [Froyland 2013].
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Optimization problem

Goal
Measurably partition

M = A ∪ Ac

s.t. L1A ≈ 1A, L1Ac ≈ 1Ac and µ(A) ≈ µ(Ac)

Invariance ratio:

ρ(A) =
〈L1A, 1A〉µ
µ(A)

+
〈L1Ac , 1Ac 〉µ

µ(Ac)
=
〈Q1A, 1A〉µ
µ(A)

+
〈Q1Ac , 1Ac 〉µ

µ(Ac)

with compact, self-adjoint operator Q := (L + L∗)/2, where L∗ dual

Q describes mass transport in forward and backward time

Relaxed problem of constrained maximization of ρ can be shown to be

max
f∈L2(M,µ)

{
〈Qf , f 〉µ
〈f , f , 〉µ

: 〈f , 1〉µ = 0

}
(∗)
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Results

Q is self-adjoint and compact, Q1 = 1; i.e. u1 = 1 is eigenfunction to
eigenvalue λ1 = 1

λ1 is simple [Froyland 2013]

Theorem

- Maximum in (∗) is λ2 and maximizing f = u2 [follows from min-max theorem],

- 2− 2
√

2(1− λ2) ≤ supA⊂X ρ(A) ≤ 1 + λ2

[Froyland, P. 2014]

Note that f = f + − f − is signed - with f + ≈ 1A and f − ≈ 1Ac

This suggest an extraction scheme.

A priori bounds - verification of matrix based bounds
[Froyland 2005, Froyland, P. 2009]

A posteriori bounds also directly apply in this setting [Huisinga, Schmidt 2006]

Influence of ε (e.g. spectral gaps, regularity of eigenvectors)
[Froyland 2013, Froyland, P. 2014]
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Numerical approximation of L

{B1, . . . ,Bn} partition of M

P transition matrix obtained via Ulam’s method

By p = pP we obtain µ(Bi ) ≈ pi .

Approximation to L, L∗:

Lij =
piPij

pj
, L∗ij = Pji

Compute second left eigenvector of sparse Q = (L + L∗)/2
(e.g. by iterative schemes)

Carry out line search to find optimal sets [Froyland, P. 2009]

Diffusion comes for free from numerical scheme but explicit incorporation is
possible

Set-oriented numerical approach implemented in software package GAIO
[Dellnitz & Junge 2001]
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Example: Lorenz system

Second eigenvector of Q and almost-invariant sets in the Lorenz system for flow
time τ = 0.4 [Froyland, P. 2009]
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FTLE and AIS

Ridges in FTLE field bound almost-invariant sets. [Froyland, P. 2009]
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Ocean structures
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[Froyland, P., England, Treguier 2007; Dellnitz, Froyland, Horenkamp, P., Sen Gupta 2009]
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Let’s move: coherent sets

Goal: find optimal slow mixing time-dependent structures

Flow map T : X → Y of a nonautonomous system ẋ = f (x , t) on [t, t + τ ],
X ,Y ⊂ M compact

Probability measure µ at t (not invariant)

Finite-time coherent pairs: At ,At+τ satisfying T (At) ≈ At+τ , i.e.
maximizing

ρ(At ,At+τ ) =
µ(At ∩ T−1(At+τ ))

µ(At)
+
µ(Ac

t ∩ T−1(Ac
t+τ ))

µ(Ac
t )

(plus robustness w.r.t. perturbations and mass constraints)

Results for matrix-based setting [Froyland, Santitissadeekorn, Monahan 2010]

Our optimization framework with compact self-adjoint operator

Q = L∗L

applies [Froyland 2013, Froyland, P. 2014]
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Numerics

Consider T : X → Y (i.e. Y := T (X ))

{B1, . . . ,Bm} partition of X , {C1, . . . ,Cn} partition of Y .

P represented by

Pij =
m(Bi ∩ T−1(Cj))

m(Bi )
≈ #{k : T (xi,k) ∈ Cj}

K
,

with test points xi,k , k = 1, . . . ,K uniformly distributed in Bi .

Given a probability measure µ (not invariant!), set pi = µ(Bi ) and q = pP.

Approximation to L, L∗:

Lij =
piPij

qj
, L∗ij = Pji

Compute second left and right singular vectors of L and do line search to find
optimal sets [Froyland et al 2010]
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Transitory double gyre [Mosovsky & Meiss 2011]

ẋ = − ∂

∂y
Ψ, ẏ =

∂

∂x
Ψ

with stream function Ψ(x , y , t) = (1− s(t))ΨP + s(t)ΨF where

ΨP(x , y) = sin(2πx) sin(πy), ΨF (x , y) = sin(πx) sin(2πy)

and transition function

s(t) =

 0, t < 0,
t2(3− 2t), 0 ≤ t ≤ 1,

1, t > 1.
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Coherent sets
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Evolution of coherent sets

Particles evolved by the flow - red particles remain in coherent set.
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Back to the ocean

Tracking of an Agulhas ring over two years. [Froyland, Horenkamp, Rossi, Sen Gupta 2015]

Coherent sets and transport barriers in the global ocean [P., Reuther, Praetorius, Voigt 2015].

Probabilistic framework for transport barriers using finite-time entropy in [Froyland, P. 2012]
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Clustering framework

Transfer operator-based framework is very powerful but involves considerable
computational effort

Wish-list for new method:

- Computationally more efficient

- Work with relatively small number of trajectories

- Respect entire trajectory not just end-points

- Deal with sparse and incomplete trajectory information

- Provide “quick and dirty” coherent sets diagnostics

Our simple solution: use geometric clustering algorithms on trajectory data
[Froyland, P. 2015]
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Trajectory-based coherent sets

n trajectories given at discrete time instants:

xi,t ∈ Rd , i = 1, . . . , n, t = 0, . . . ,T

Extract bundles of trajectories that make up coherent sets, i.e. that
minimally spread out over time
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Something like that!
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General clustering framework

Discrete dynamic metric:

D(xi,0, xj,0) =
T∑
t=0

ρ(xi,t , xj,t)
2

for xi,0, xj,0 ∈ Rd , 1 ≤ i , j ≤ n, based on some metric ρ on Rd (Euclidean
metric in the following)

Gives n(n − 1)/2 interpoint distances D(xi,0, xj,0).

xi,0 and xj,0 are close if they stay close under time-evolution

Cluster the initial points xi,0 ∈ Rd according D

Any clustering method on Rd could be employed at this point,
e.g. k-means, fuzzy c-means, or density-based clustering approaches.
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Possible simple clustering strategy

Interpret {xi,t}0≤t≤T as a point

Xi = (xi,0, xi,1, . . . , xi,T ) ∈ Rd(T+1)

Apply fuzzy c-means [Bezdek 1981–] on the n data points in Rd(T+1)

For fixed number of clusters K ∈ N fuzzy c-means computes

- a centre Ck ∈ Rd(T+1) for each cluster k = 1, . . . ,K and

- a likelihood of membership uk,i of each Xi , i = 1, . . . , n to each Ck .

Objective: minimise

K∑
k=1

n∑
i=1

um
k,i‖Xi − Ck‖2 =

K∑
k=1

n∑
i=1

um
k,i

T∑
t=0

‖xi,t − ck,t‖2 (obj)

subject to
∑K

k=1 uk,i = 1 and
∑n

i=1 uk,i > 0

Fuzziness exponent m > 1 (increasing m means softer clusters)

Iterative scheme, implemented e.g. as fcm in MATLAB.
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Coherent sets in transitory double gyre
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Kathrin Padberg-Gehle Madrid · July 7, 2016 27 / 33



Properties and extensions

Clustering into spheres is preferred by Euclidean norm but other distance
functions could be used.

Interpretations for continuous time and continuous space available.

Isotropic scaling of space and time has no effect.

Clustering results are frame-independent.

Weights can be included as coefficients for ‖xi,t − ck,t‖2, which could depend
on i , t, or k (e.g. discount distances far in the future).

Missing data can be easily handled (restrict computations of Ck to
available data per time-slice).

Treatment of almost-invariant sets also possible.

Normalized entropy can serve as a measure for classification uncertainty.
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Application I: global ocean drifters

2267 drifters in 2005–2009 with minimum lifetime of one year and monthly output of positions.
Approximation of K = 5 clusters.

Data: http://www.aoml.noaa.gov/envids/gld/
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Application II: turbulent convection

Experimental set-up in Barrel of Ilmenau, Germany.

Cell dimensions: 2.5 m (H) x 2.5 m (W) x 0.65 m (D); temperature difference: 10K Tbot = 35◦C

Ttop = 25◦C; Rayleigh number Ra ≈ 1.5e10

Kathrin Padberg-Gehle Madrid · July 7, 2016 30 / 33



Coherent structures

Coherent plumes visible in experimental data (du Puits et al, PRL 2014)
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Trajectory-based coherent sets

Coherent set in convection flow (extracted from PIV velocity data) – using only the trajectories shown.

Joint work with Ronald du Puits, Ilmenau
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Conclusion and future research

Computational study of coherent flow structures

Optimization problems within transfer operator and clustering framework

Both coherent sets and boundaries can be extracted

Many applications, mathematical and computational challenges

Automatic extraction of many coherent sets
[Karrasch, Huhn, Haller 2014; Ma, Bollt 2013]

Systematic comparison with other approaches

Active transport, inertial particles

Early warning signals for bifurcations

Thank you!

kathrin.padberg@tu-dresden.de
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