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THE RELEVANCE OF LAGRANGIAN DYNAMICS 

Planet formation 

Rain production 

Plankton patchiness 

Olfactory landscapes  
Hemolisys 

Infotaxi-  
search strategy 

. beyond pure fluid dynamics 
 
. out-of-equilibrium, multiscale 
 
. challenging & interesting 
 
. complicate but measurable 

Dispersion & Connectivity 



 
 About the talk 

•  Develop a suitable model for Lagrangian Transport :  
   on the role of vertical shear 

•  Model calibration from in-situ measurements 
 

•  An application: Lagrangian dynamics in the Sicily Channel 

With:  
Luigi Palatella, Guglielmo Lacorata, Federico Falcini, Raffaele Corrado, Rosalia Santoleri 

  



1 accurately know the spatial statistics of the flow velocity  
   along Lagrangian paths high-resolution, high frequency   
    
2 scale separation to disentangle different dispersion regimes: 
   exponential, ballistic, turbulent, mean shear, Taylor-like,.. 
 
3  have high statistical accuracy : long records along 
   many Lagrangian paths 
 
4 limit the impact of inhomogeneities, 
   unsteadiness, anisotropies, stratification, super position of  
   different motions  
 
 
 DIFFICULT TO FULLFILL ALL THESE! 
 
 So observations have to be carefully examined  
  

 
WHAT’S THE PROBLEM WITH LAGRANGIAN  
 
MOTION? 



 
 Mediterranean Surface Circulation 

(Poulain et al, J Phys Ocean. 2012) 



 
Modelling Lagrangian dynamics  

dX

dt
= U(X, t) + u(X, t)

•  Large-scale flow U(X,t) is known at discrete times and on a coarse grid 
       
 
 
 
 
•  Small-scale component u(X,t) is unknown and generally includes many complicate effects: 

anisotropic, non homogeneus (coastal or topographical), transient phenomena 
 
•  Spatio-temporal interpolation of U(X,t) can not introduce missing information 

X 2 {x0,x1,x2, · · · }

t 2 {t0, t1, t2, · · · }

TIME RESOLUTION ISSUE 
 
example: 3 months daily data of a GCM model 
 
Two Lagrangian simulations of surface dispersion : 
 
RED POINTS :  using daily currents 
BLUE POINTS: using the monthly averaged currents 
 
 
Mean dispersion is not equal to mean field dispersion  
 
Problem: Extracting Lagrangian mean properties from Eulerian 
mean fields 



 
Which missing features should we include ? 
In standard GCM (with data assimilation scheme):  
Nominally grid ranges from (10 à 2) km  
 
BUT because of dissipative terms :  
Horizontal structures at mesoscales and sub-mesoscales are hardly resolved 
 
Moreover, no circulation model describes the mixed layer dynamics  
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Monthly averaged Maps of Kinetic Energy (per unit mass) measured at z = −20 mt  
 
      KINETIC ENERGY  mean velocity (MKE)                     KINETIC ENERGY from velocity fluctuations (EKE) 

Mediterranean sea Forecasting System (MFS) model: 1/16° x 1/16° (~ 6.5 km)    



 
The dimensional gap: on role of the vertical shear 

Pretty good knowledge of 2D processes, but experimental gap of its vertical 
variation 
Is vertical shear important for horizontal dispersion?    

P1

P2
P1’

LON

Z

P2’

LAT

dR

dt
= �RU(R, t) + �Ru(R, t)

R(t) ⌘ X1(t)�X2(t)

Some estimates based on mean velocities: 
 
Vertical shear à  10-5/s 
 
Horizontal shear à 10-3/s 
 
So Vertical shear considered as negligible 
 
But it can increase currents dissipation and  
Turbulence persistence among ocean layers 
 

OPEN OCEAN MEASUREMENTS  



 
Theoretical expectations 

Richardson 4/3 Law for Turbulent Eddy Diffusivity  

Super-Diffusive growth due 
to 3D turbulence 

REMARK 
Pair dispersion in the presence of a mean shear (γR3,0,0) and random walk in 
other comp. 

dR1(t) = �R3dt dR3(t) = 2
p

D0d⌘(t)

D(R) / R4/3
1

Anosotropic Super-Diffusive  
growth due to mean shear hR2

1i ' D0�
2t3

(Okubo 1971) 

(Richardson 1926) R0, ΔR0V 

R(t), δRu 

R0, δR0u 



 
Acoustic Doppler Current Profilers  
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•  4 ADCP 300kHz 
     deployed Feb 1999- Feb 2000, 
     averaged over 10  minutes 

•  Water depth ~ 100 mt 

•  Strong thermocline from June-
October about z=-30mt (~10° C);  

    then weakens and move to z=- 80mt    
    in November; disappears in February.  
 
•  Salinity higher above the 
     thermocline than below(~39 PSU)      
     constant throughout the year. 
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Model vs Experiment: statistics of velocity gradients 

TWO SELECTED PERIODS:  [February - April 1999]  [ December 1999 - February 2000] 
 
Vertical gradient  Stat. : ADCP measures vs MFS estimates at same locations 
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MFS: can not account for temporal variabilityà introduces a spurious time persistence of velocity gradients 



 
LAGRANGIAN DISPERSION  
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MFS numerical drifters: 50000 pair homogeneously distributed in the Mediterranean 
Integrated over 3 months, Jan- March 2009; initial sep R(0)=5km 
713 Surface buoys, drogued at 15 mt, 1990-2012 database from Marine Copernicus 

How does the model account for surface relative dispersion? 
Finite Size Lyapunov Exponent clearly shows how badly MFS describes Lagrangian dispersion 
  

(Lacorata et al. JGR-Oc.2014)  

~ R-2/3 



TWO OBSERVATIONS 

1.  Low temporal resolution of MFS model introduces an anomalously long 
time persistence of vertical velocity gradients à artifact: enhanced 
relative dispersion ? 

2.  Because of the poor temporal and spatial resolution,  
       à MFS model completely miss surface relative dispersion at   
          scales R  < 40km 

    

PROPOSED SOLUTION 
Use Kinematic Lagrangian Model to better account for sub-grid motion poorly or 
un-resolved : 
 
•  Introducing mesoscale surface structures (2D KLM) 

•  Introducing vertical mixing  due to 3D turbulent-like motions (3D KLM) 
 

    



LAGRANGIAN DETERMINISTIC MODELS 

The idea is to exploit Lagrangian chaos present also in non-chaotic  
Eulerian smooth flows (Solomon & Gollup 1988, Crisanti et al. 1991) 
and fix temporal and spatial scaling according to the desired dynamics 

k2 

k1 
PROS & CONS 
+ model correctly reproduces 1p and 2p diffusion 
+ physical content is clear and no indetermination 
   problem (as in stochastic 3D models) 
+ correctly accounts for sweeping of small scales by the 
   large ones 
-  can not account for multi-particle dispersion 
    (see Mazzitelli, Toschi, Lanotte PoF 2014) 

r(t) 

r0 



KINEMATIC LAGRANGIAN MODEL 

•  2D MODEL (u2D,v2D): mimicking mesoscale structures  

u2D(x, y, t) =

6X

j=1

Aj sin[kjx� kjsj sin(!jt))] cos[kjy � kjsjsin(!jt+ ✓)]

lj = {10.0, 14.120.0, 28.0, 40.0, 56.5} km

" = 10�9m2s�3

Aj / ("lj)
1/3 !j = 2⇡Aj/lj kj = 2⇡/lj

Such that on surface kinetic energy spectrum E(k) ~ k-5/3 for scales [10:100] km         (Lumpkin &  Elipot 2010) 

⌧j = lj/Aj = {13h, ..., 15 day}

•  3D MODEL (u3D, v3D, w3D): mimicking mixed layer dynamics 

u3D(x, y, z, t) = e

�|z|/L ⇥

A sin[k(x� s sin(!t))] cos[

b
k(z � s sin(!t))]� A

L

b
k

sin[k(x� s sin(!t))] . . .

�

⌧n = {6, ... , 16}min

Aj / ("lj)
1/3 !j = 2⇡Aj/lj kj = 2⇡/lj

Based on mixing due to Kolmogorov 3D direct cascade of energy  

ln = {25.0, 33, 4, 50.0, 70.7, 100}m
L = 100m " = 10�5m2s�3



NUMERICAL EXPERIMENTS 

•  Large-scale flow is given by MFS daily currents  
    (UMFS,VMFS) 
 
•  Flow is seeded with  5*104  pairs  of  
    Lagrangian particles, homogeneously distributed 
    in the Mediterranean, R0 = (0,0,40) between 
    z=-3m and z=-43 m. 
    Coasts = bouncing boundaries  
 
•  Numerical simulations are performed over one year (Jan-Dec 1999) 

 
SERIES I: particles are integrated on the basis of with MFS flow only. 

    They feel the vertical shear given by the MFS model. 
               so particles keep initial depth forever.  
 
 
SERIES II: particles are integrated on the basis of with MFS flow +3D KLM 

      Particles explore mixed layer thanks to 3D KLM model 
                 UMFS + u3D-KLM 
 
SERIES III: particles are integrated on the basis of with  
                 MFS flow +3D KLM +2D KLM 

      Particles explore mixed layer thanks to 3D KLM model 
                 UMFS + u3D-KLM + u2D-KLM 



RESULTS  

Finite Size Lyapunov Exponent measured on the surface dispersion only 
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An application: anchovy egg and larvae transport 

We studied the inter-annual variability (1999-2012) in the transport of anchovy eggs  
And larvae in the Sicily Channel. 
 
Sub-grid-scale dynamics is parameterized  in terms of 2D + 3D KLM. 
 
Trajectories are integrated for three months of each year. Eggs are released few 
km off the coast: fixed spawning rate from June to September.  
 
à  Lagrangian Transport Index (LTI) = the efficiency in the connection between  
    spawning and nursery areas. 
 
à  Lagrangian connectivity can be very efficient (2004, 2008, 2012)   
    and very weak (2000, 2001, 2003, 2010) 



RUN	
   2D	
   3D	
   DVM	
  

RUN	
  A	
   YES	
   YES	
   NO	
  

RUN	
  B	
   NO	
   YES	
   NO	
  

RUN	
  C	
   YES	
   YES	
   YES	
  

Lagrangian Transport Index (LTI) = the 
percentage of individuals arriving alive in the 
recruitment area within 25 days after release. 

•  Tests the robustness of LTI using the 2D and 3D kinematic fields,  and 
Diel Vertical Motion 

•  Tests also changing KLM parameters

²  eggs are buoyant for age < 1.5 days 
 
²  larvae are mixed by 3D turbulence without DVM 

²  Diel Vertical Motion (DVM): larvae move to surface 
during daytime and to deeper water during nighttime 
 
²  A mortality rate is included for both eggs and larvae 

The Lagrangian Transport index 



The Lagrangian Transport variability 

Anchovy egg and larva density fluctuations can be related to Lagrangian transport variability,  
without invoking—but clearly not excluding—interannual variations of the spawning area  
and/or the spawning rate. 

MOVIES FROM RUN MFS + KLM 2D 
 
Colors indicate the age:  
red (less than 5 days) 
 
blu (between 5 and 10 days) 
 
green (between 10 days and 25 days) 



   We focused on the modeling of Lagrangian Dispersion 
 IDENTIFY WHICH ARE THE RELEVANT FEATURES  

    
  We examined the role of vertical shear on the Horizontal Dispersion 

 combining EULERIAN FLOW from a GCM MODEL & 
 LAGRANGIAN SUB-GRID SCALE DYNAMICS 

   
  Having accurate measurements to compare with is crucial 
      to IDENTIFYING MODEL SPURIOUS BEHAVIOURS & 
          ADJUST MODEL PARAMETERS 
 
  

 
SUMMARY 
 



 
CONCLUSIONS 
 

•  Effects of vertical shear in modelling horizontal oceanic dispersion 
     A. S. Lanotte, R. Corrado, L. Palatella, C. Pizzigalli, I. Schipa, and R. Santoleri,  
     OS  12, 2016 
 
•  Lagrangian simulations and interannual variability of anchovy egg and 

larva dispersal in the Sicily Channel 
     L.Palatella, F. Bignami, F. Falcini, G. Lacorata, A. S. Lanotte, and R. Santoleri 
     JGR-OCEANS 119, 2014 

    
   

•  The resolved field given by the large scale ocean model are not 
suitable for Lagrangian simulations both from a single-trajectory 
and multiple-trajectory points of view. 
 
•  The use of kinematic models allows to recover, from a statistical 
point of view, the actual dispersion properties. 
 
•  These can be used to have first indications on the motion 
of small organisms dispersed in the ocean.  


