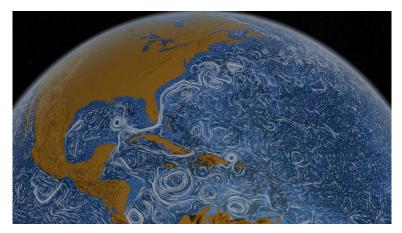
Coherent sets in nonautonomous dynamics

Kathrin Padberg-Gehle

Technische Universität Dresden Institut für Wissenschaftliches Rechnen

Madrid · July 7, 2016

Motivation



The Perceptual Ocean.

(Movie credit: NASA/Goddard Space Flight Center, Scientific Visualization Studio)

Mathematical challenges

- How to mathematically characterize structures that remain *coherent* for an extended time span (such as ocean gyres and eddies)?
- In other words: How to define what you can physically observe?
- How to systematically, reliably, and efficiently extract these structures?
- How to quantify the mass exchange between these structures and their surroundings?
- How to enhance/mitigate/control coherence?

Concepts for analyzing flow structures

- Geometric approach: detect barriers to particle transport
 - ▶ invariant manifolds [Rom-Kedar, Wiggins, Mancho, Balasuriya, ...]
 - Lagrangian coherent structures (LCS) [Haller, Shadden, Lekien, Marsden, Beron-Vera,...]

Approximate set boundaries!

- Probabilistic approach: detect minimally dispersive regions
 - almost-invariant sets (spatially fixed)
 [Dellnitz, Junge, Schütte, Froyland, Koltai, P., ...]
 - finite-time coherent sets (moving)
 [Froyland, Santitissadeekorn, Monahan, Bollt, Junge, P., ...]

Approximate sets!

In this talk

Probabilistic approach

- Transfer operators and numerics
- Almost-invariant sets
- Functional analytic framework
- Finite-time coherent sets
- Clustering framework
- Examples and applications
- Conclusion and future research

Joint work with Gary Froyland, UNSW Australia

Notation

• Discrete dynamical system

 $T: M \to M, \ M \subset \mathbb{R}^d$ compact

• Here: T diffeomorphism (not formally required!),

e.g. an autonomous flow map:

$$T(\cdot) := x(\tau; \cdot),$$

where $x(\tau; x_0)$ solves $\dot{x} = f(x)$, $x_0 = x(0)$ for fixed flow time $\tau \in \mathbb{R}$

• A set $A \subset M$ is T-invariant if

$$A=T^{-1}(A).$$

- \mathcal{M} space of finite signed measures on M
- Probability measure $\mu \in \mathcal{M}$ is *T*-invariant if

$$\mu(A) = \mu(T^{-1}(A))$$
 for all $A \subset M$.

Transfer operators in dynamics

 $\bullet~$ Define linear operator $\textbf{P}:\mathcal{M}\rightarrow\mathcal{M}$

$$(\mathbf{P}\nu)(A) = \nu(T^{-1}(A)), \ A \subset M.$$

More relevant: $\mathbf{P}: L^1(M, m) \circlearrowleft$ with

$$\int_{A} \mathbf{P}f \ dm = \int_{T^{-1}(A)} f \ dm, \ m \text{ Lebesgue measure}$$

and for diffeomorphisms

$$\mathbf{P}f(x) = \frac{f(T^{-1}x)}{|\det DT(T^{-1}x)|}$$

- ${f P}$ is the natural push-forward of densities under the action of ${\cal T}$
- \bullet Invariant density corresponds to fixed point of ${\bf P},$ i.e. eigenfunction to eigenvalue 1
- Transfer operator or Perron-Frobenius operator
- P is a Markov operator

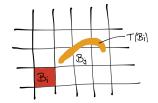
Numerical approximation of ${\bf P}$

- Consider $T: M \to M$
- $\{B_1, \ldots, B_n\}$ partition of M
- Galerkin approximation of P with indicator functions on B_i, i = 1,...n, as basis functions [Ulam 1960]
- P represented by a sparse, stochastic matrix

$$P_{ij} = rac{m(B_i \cap T^{-1}(B_j))}{m(B_i)} pprox rac{\#\{k : T(x_{i,k}) \in B_j\}}{K},$$

with test points $x_{i,k}$, k = 1, ..., K uniformly distributed in B_i [Hunt 1993].

- Fixed points of P converge to invariant density of \mathbf{P} as $n \to \infty$ for a very restricted class of systems [e.g. Li 1976]
- *P* is in general *assumed* to be a good approximation of **P**



Almost-invariant sets

- μ preserved by $T: M \to M$
- $A \subset M$ is almost-invariant if $T(A) \approx A$, i.e.

$$\frac{\mu(A\cap T^{-1}(A))}{\mu(A)}\approx 1$$

- Application of transfer operator methods for almost-invariant sets:
 - Study eigenfunctions of transfer operator P / eigenvectors of P to real eigenvalues close to 1 [Dellnitz/Junge 1997/99, Deuflhard et al. 1998, Huisinga, Schmidt 2006],
 - Consider eigenfunctions of the infinitesimal generator of P and its discretization [Froyland/Junge/Koltai 2013]
 - ► Consider eigenvectors of a transition matrix *R* of a reversible Markov chain constructed from *P* [Froyland 2005; Froyland, P. 2009]
 - ► Consider optimal partitions of a directed graph induced by P or R [Froyland, Dellnitz 2003, Dellnitz et al. 2005]
 - Applications in physical oceanography, dynamical astronomy, fluid mixers, oil spills, epidemic spread,...

No uniform framework for deriving optimality criteria

Proposed construction [Froyland, P. 2014]

- Task: find nontrivial sets A, A^c
- that maximize

$$\rho(A) := rac{\mu(A \cap T^{-1}(A))}{\mu(A)} + rac{\mu(A^c \cap T^{-1}(A^c))}{\mu(A^c)}$$

- and are robust w.r.t. to perturbations

Proposed construction [Froyland, P. 2014]

- Task: find nontrivial sets A, A^c
- that maximize

$$\rho(A) := rac{\mu(A \cap T^{-1}(A))}{\mu(A)} + rac{\mu(A^c \cap T^{-1}(A^c))}{\mu(A^c)}$$

- Construction: Use operator L dynamically similar to P, with L1 = 1
- Functional representation of invariance condition $A \approx T(A)$:

 $L1_A \approx 1_A$ (solution to eigenequation)

When

$$\mathsf{L} := \mathcal{D}_{\epsilon}\mathsf{P}\mathcal{D}_{\epsilon}/(\mathcal{D}_{\epsilon}\mathsf{P}\mathcal{D}_{\epsilon}\mathbf{1})$$

where \mathcal{D}_{ϵ} is a diffusion operator then – under mild assumptions – **L** is compact on $L^2(M, \mu)$ [Froyland 2013].

Optimization problem

Goal

Measurably partition

$$M = A \cup A^c$$

s.t. $\mathbf{L} \mathbf{1}_A \approx \mathbf{1}_A$, $\mathbf{L} \mathbf{1}_{A^c} \approx \mathbf{1}_{A^c}$ and $\mu(A) \approx \mu(A^c)$

• Invariance ratio:

$$\rho(\mathcal{A}) = \frac{\langle \mathsf{L}\mathbf{1}_{\mathcal{A}}, \mathbf{1}_{\mathcal{A}} \rangle_{\mu}}{\mu(\mathcal{A})} + \frac{\langle \mathsf{L}\mathbf{1}_{\mathcal{A}^c}, \mathbf{1}_{\mathcal{A}^c} \rangle_{\mu}}{\mu(\mathcal{A}^c)} = \frac{\langle \mathsf{Q}\mathbf{1}_{\mathcal{A}}, \mathbf{1}_{\mathcal{A}} \rangle_{\mu}}{\mu(\mathcal{A})} + \frac{\langle \mathsf{Q}\mathbf{1}_{\mathcal{A}^c}, \mathbf{1}_{\mathcal{A}^c} \rangle_{\mu}}{\mu(\mathcal{A}^c)}$$

with compact, self-adjoint operator $\mathbf{Q} := (\mathbf{L} + \mathbf{L}^*)/2$, where \mathbf{L}^* dual

 ${\ \bullet \ } Q$ describes mass transport in forward and backward time

Optimization problem

Goal

Measurably partition

$$M = A \cup A^c$$

s.t. $L1_A \approx 1_A$, $L1_{A^c} \approx 1_{A^c}$ and $\mu(A) \approx \mu(A^c)$

• Invariance ratio:

$$\rho(A) = \frac{\langle \mathsf{L}\mathbf{1}_A, \mathbf{1}_A \rangle_\mu}{\mu(A)} + \frac{\langle \mathsf{L}\mathbf{1}_{A^c}, \mathbf{1}_{A^c} \rangle_\mu}{\mu(A^c)} = \frac{\langle \mathsf{Q}\mathbf{1}_A, \mathbf{1}_A \rangle_\mu}{\mu(A)} + \frac{\langle \mathsf{Q}\mathbf{1}_{A^c}, \mathbf{1}_{A^c} \rangle_\mu}{\mu(A^c)}$$

with compact, self-adjoint operator $\mathbf{Q} := (\mathbf{L} + \mathbf{L}^*)/2$, where \mathbf{L}^* dual

- ${\ \bullet \ } Q$ describes mass transport in forward and backward time
- ${\scriptstyle \bullet }$ Relaxed problem of constrained maximization of ρ can be shown to be

$$\max_{f \in L^2(M,\mu)} \left\{ \frac{\langle \mathbf{Q}f, f \rangle_{\mu}}{\langle f, f, \rangle_{\mu}} : \langle f, \mathbf{1} \rangle_{\mu} = 0 \right\} (*)$$

Results

- Q is self-adjoint and compact, Q1 = 1; i.e. u₁ = 1 is eigenfunction to eigenvalue λ₁ = 1
- λ_1 is simple [Froyland 2013]

Theorem

- Maximum in (*) is λ_2 and maximizing $f = u_2$ [follows from min-max theorem],
- $2 2\sqrt{2(1-\lambda_2)} \leq \sup_{A \subset X} \rho(A) \leq 1 + \lambda_2$

[Froyland, P. 2014]

Results

- Q is self-adjoint and compact, Q1 = 1; i.e. u₁ = 1 is eigenfunction to eigenvalue λ₁ = 1
- λ_1 is simple [Froyland 2013]

Theorem

- Maximum in (*) is λ_2 and maximizing $f = u_2$ [follows from min-max theorem],
- $2 2\sqrt{2(1-\lambda_2)} \leq \sup_{A \subset X} \rho(A) \leq 1 + \lambda_2$

[Froyland, P. 2014]

- Note that $f = f^+ f^-$ is signed with $f^+ pprox {f 1}_{\cal A}$ and $f^- pprox {f 1}_{{\cal A}^c}$
- This suggest an extraction scheme.
- A priori bounds verification of matrix based bounds [Froyland 2005, Froyland, P. 2009]
- A posteriori bounds also directly apply in this setting [Huisinga, Schmidt 2006]
- Influence of ϵ (e.g. spectral gaps, regularity of eigenvectors) [Froyland 2013, Froyland, P. 2014]

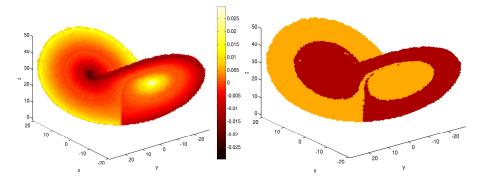
Numerical approximation of ${\bf L}$

- $\{B_1, \ldots, B_n\}$ partition of M
- P transition matrix obtained via Ulam's method
- By p = pP we obtain $\mu(B_i) \approx p_i$.
- Approximation to L, L*:

$$L_{ij} = \frac{p_i P_{ij}}{p_j}, \quad L_{ij}^* = P_{ji}$$

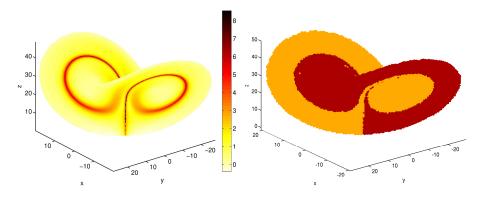
- Compute second left eigenvector of sparse $Q = (L + L^*)/2$ (e.g. by iterative schemes)
- Carry out line search to find optimal sets [Froyland, P. 2009]
- Diffusion comes for free from numerical scheme but explicit incorporation is possible
- Set-oriented numerical approach implemented in software package GAIO [Dellnitz & Junge 2001]

Example: Lorenz system



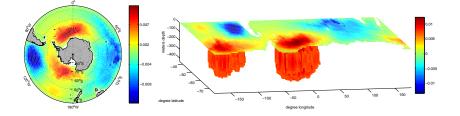
Second eigenvector of Q and almost-invariant sets in the Lorenz system for flow time $\tau=0.4$ [Froyland, P. 2009]

FTLE and AIS



Ridges in FTLE field bound almost-invariant sets. [Froyland, P. 2009]

Ocean structures



Major gyres in Southern Ocean extracted as almost-invariant sets ($\tau = 2 \text{ months}$) [Froyland, P., England, Treguier 2007; Dellnitz, Froyland, Horenkamp, P., Sen Gupta 2009]

Let's move: coherent sets

- Goal: find optimal slow mixing time-dependent structures
- Flow map $T: X \to Y$ of a nonautonomous system $\dot{x} = f(x, t)$ on $[t, t + \tau]$, $X, Y \subset M$ compact
- Probability measure μ at t (not invariant)
- Finite-time coherent pairs: A_t, A_{t+τ} satisfying T(A_t) ≈ A_{t+τ}, i.e. maximizing

$$\rho(A_t, A_{t+\tau}) = \frac{\mu(A_t \cap T^{-1}(A_{t+\tau}))}{\mu(A_t)} + \frac{\mu(A_t^c \cap T^{-1}(A_{t+\tau}^c))}{\mu(A_t^c)}$$

(plus robustness w.r.t. perturbations and mass constraints)

- Results for matrix-based setting [Froyland, Santitissadeekorn, Monahan 2010]
- Our optimization framework with compact self-adjoint operator

$$Q = L^*L$$

applies [Froyland 2013, Froyland, P. 2014]

Kathrin Padberg-Gehle

Numerics

- Consider $T: X \to Y$ (i.e. Y := T(X))
- $\{B_1, \ldots, B_m\}$ partition of X, $\{C_1, \ldots, C_n\}$ partition of Y.
- ${\scriptstyle \bullet}~ P$ represented by

$$P_{ij}=\frac{m(B_i\cap T^{-1}(C_j))}{m(B_i)}\approx\frac{\#\{k:T(x_{i,k})\in C_j\}}{K},$$

with test points $x_{i,k}$, k = 1, ..., K uniformly distributed in B_i .

Given a probability measure μ (not invariant!), set p_i = μ(B_i) and q = pP.
Approximation to L, L*:

$$L_{ij}=\frac{p_iP_{ij}}{q_j}, \quad L_{ij}^*=P_{ji}$$

• Compute second left and right singular vectors of *L* and do line search to find optimal sets [Froyland et al 2010]

Transitory double gyre [Mosovsky & Meiss 2011]

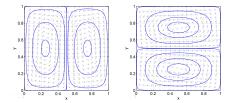
$$\dot{x} = -rac{\partial}{\partial y}\Psi, \quad \dot{y} = rac{\partial}{\partial x}\Psi$$

with stream function $\Psi(x, y, t) = (1 - s(t))\Psi_P + s(t)\Psi_F$ where

$$\Psi_P(x,y) = \sin(2\pi x)\sin(\pi y), \ \Psi_F(x,y) = \sin(\pi x)\sin(2\pi y)$$

and transition function

$$s(t) = \left\{egin{array}{ccc} 0, & t < 0, \ t^2(3-2t), & 0 \leq t \leq 1, \ 1, & t > 1. \end{array}
ight.$$

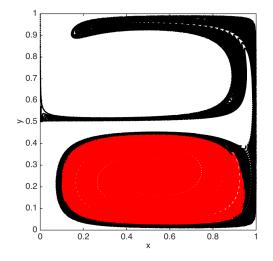


Coherent sets

0.5 0.9 0.8 0.8 0.7 0.7 0.6 0.6 > 0.5> 0.6-0.5 -0.5 0.4 0.3 0.3 -1.5 0.2 0.2 -2 0.1 0.1 2.5 0 0.9 0.8 0.8 0.7 0.7 0.6 0.6 > 0.5> 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.2 0.6 0.8 0 x х

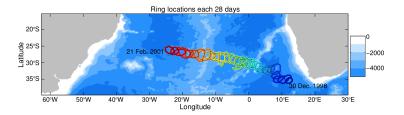
Left and right singular vectors in the transitory double gyre flow w.r.t. time span [0, 1] and extracted finite-time coherent sets at t = 0 and $t + \tau = 1$.

Evolution of coherent sets

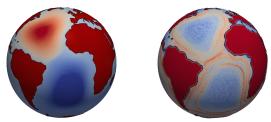


Particles evolved by the flow - red particles remain in coherent set.

Back to the ocean



Tracking of an Agulhas ring over two years. [Froyland, Horenkamp, Rossi, Sen Gupta 2015]



Coherent sets and transport barriers in the global ocean [P., Reuther, Praetorius, Voigt 2015]. Probabilistic framework for transport barriers using **finite-time entropy** in [Froyland, P. 2012]

Clustering framework

• Transfer operator-based framework is very powerful but involves considerable computational effort

• Wish-list for new method:

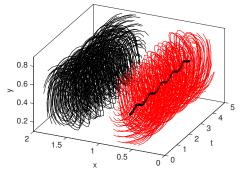
- Computationally more efficient
- Work with relatively small number of trajectories
- Respect entire trajectory not just end-points
- Deal with sparse and incomplete trajectory information
- Provide "quick and dirty" coherent sets diagnostics
- **Our simple solution:** use geometric clustering algorithms on trajectory data [Froyland, P. 2015]

Trajectory-based coherent sets

• *n* trajectories given at discrete time instants:

$$x_{i,t} \in \mathbb{R}^d, i = 1, \ldots, n, t = 0, \ldots, T$$

• Extract bundles of trajectories that make up coherent sets, i.e. that minimally spread out over time



Something like that!

• Discrete dynamic metric:

$$\mathbf{D}(x_{i,0}, x_{j,0}) = \sum_{t=0}^{T} \rho(x_{i,t}, x_{j,t})^2$$

for $x_{i,0}$, $x_{j,0} \in \mathbb{R}^d$, $1 \le i, j \le n$, based on some metric ρ on \mathbb{R}^d (Euclidean metric in the following)

• Gives n(n-1)/2 interpoint distances $\mathbf{D}(x_{i,0}, x_{j,0})$.

• Discrete dynamic metric:

$$\mathbf{D}(x_{i,0}, x_{j,0}) = \sum_{t=0}^{T} \rho(x_{i,t}, x_{j,t})^2$$

for $x_{i,0}$, $x_{j,0} \in \mathbb{R}^d$, $1 \le i, j \le n$, based on some metric ρ on \mathbb{R}^d (Euclidean metric in the following)

- Gives n(n-1)/2 interpoint distances $\mathbf{D}(x_{i,0}, x_{j,0})$.
- $x_{i,0}$ and $x_{j,0}$ are close if they stay close under time-evolution

• Discrete dynamic metric:

$$\mathbf{D}(x_{i,0}, x_{j,0}) = \sum_{t=0}^{T} \rho(x_{i,t}, x_{j,t})^2$$

for $x_{i,0}$, $x_{j,0} \in \mathbb{R}^d$, $1 \le i, j \le n$, based on some metric ρ on \mathbb{R}^d (Euclidean metric in the following)

- Gives n(n-1)/2 interpoint distances $\mathbf{D}(x_{i,0}, x_{j,0})$.
- $x_{i,0}$ and $x_{j,0}$ are close if they stay close under time-evolution
- **Cluster** the initial points $x_{i,0} \in \mathbb{R}^d$ according **D**

• Discrete dynamic metric:

$$\mathbf{D}(x_{i,0}, x_{j,0}) = \sum_{t=0}^{T} \rho(x_{i,t}, x_{j,t})^2$$

for $x_{i,0}$, $x_{j,0} \in \mathbb{R}^d$, $1 \le i, j \le n$, based on some metric ρ on \mathbb{R}^d (Euclidean metric in the following)

- Gives n(n-1)/2 interpoint distances $\mathbf{D}(x_{i,0}, x_{j,0})$.
- $x_{i,0}$ and $x_{j,0}$ are close if they stay close under time-evolution
- **Cluster** the initial points $x_{i,0} \in \mathbb{R}^d$ according **D**
- Any clustering method on ℝ^d could be employed at this point,
 e.g. k-means, fuzzy c-means, or density-based clustering approaches.

Possible simple clustering strategy

• Interpret $\{x_{i,t}\}_{0 \le t \le T}$ as a point

$$X_i = (x_{i,0}, x_{i,1}, \ldots, x_{i,T}) \in \mathbb{R}^{d(T+1)}$$

- Apply fuzzy *c*-means [Bezdek 1981–] on the *n* data points in $\mathbb{R}^{d(T+1)}$
- For fixed number of clusters $K \in \mathbb{N}$ fuzzy *c*-means computes
- a centre $\mathcal{C}_k \in \mathbb{R}^{d(T+1)}$ for each cluster $k=1,\ldots,K$ and
- a likelihood of membership $u_{k,i}$ of each X_i , i = 1, ..., n to each C_k .

Possible simple clustering strategy

• Interpret $\{x_{i,t}\}_{0 \le t \le T}$ as a point

$$X_i = (x_{i,0}, x_{i,1}, \ldots, x_{i,T}) \in \mathbb{R}^{d(T+1)}$$

- Apply fuzzy *c*-means [Bezdek 1981–] on the *n* data points in $\mathbb{R}^{d(T+1)}$
- For fixed number of clusters $K \in \mathbb{N}$ fuzzy *c*-means computes
- a centre $C_k \in \mathbb{R}^{d(T+1)}$ for each cluster $k = 1, \dots, K$ and
- a likelihood of membership $u_{k,i}$ of each X_i , i = 1, ..., n to each C_k .
- Objective: minimise

$$\sum_{k=1}^{K} \sum_{i=1}^{n} u_{k,i}^{m} \|X_{i} - C_{k}\|^{2} = \sum_{k=1}^{K} \sum_{i=1}^{n} u_{k,i}^{m} \sum_{t=0}^{T} \|x_{i,t} - c_{k,t}\|^{2} \quad (\text{obj})$$
subject to $\sum_{k=1}^{K} u_{k,i} = 1$ and $\sum_{i=1}^{n} u_{k,i} > 0$

Possible simple clustering strategy

• Interpret $\{x_{i,t}\}_{0 \le t \le T}$ as a point

$$X_i = (x_{i,0}, x_{i,1}, \ldots, x_{i,T}) \in \mathbb{R}^{d(T+1)}$$

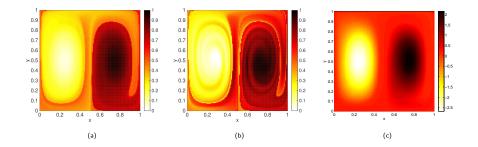
- Apply fuzzy *c*-means [Bezdek 1981-] on the *n* data points in $\mathbb{R}^{d(T+1)}$
- For fixed number of clusters $K \in \mathbb{N}$ fuzzy *c*-means computes
- a centre $C_k \in \mathbb{R}^{d(T+1)}$ for each cluster $k = 1, \dots, K$ and
- a likelihood of membership $u_{k,i}$ of each X_i , i = 1, ..., n to each C_k .
- Objective: minimise

$$\sum_{k=1}^{K} \sum_{i=1}^{n} u_{k,i}^{m} \|X_{i} - C_{k}\|^{2} = \sum_{k=1}^{K} \sum_{i=1}^{n} u_{k,i}^{m} \sum_{t=0}^{T} \|x_{i,t} - c_{k,t}\|^{2} \quad (\text{obj})$$

subject to $\sum_{k=1}^{K} u_{k,i} = 1$ and $\sum_{i=1}^{n} u_{k,i} > 0$

- Fuzziness exponent m > 1 (increasing m means softer clusters)
- Iterative scheme, implemented e.g. as fcm in MATLAB.

Coherent sets in transitory double gyre

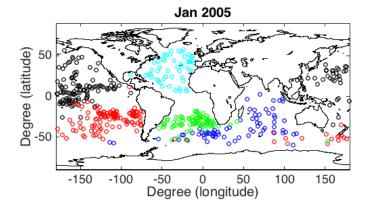


Approximation of coherent sets for transitory double gyre flow at $t_0 = 0$, computed on [0, 1]. 2¹⁴ initial conditions, trajectory output in 0.1 time instants. (a) Membership functions for 2-clustering using entire trajectories and for (b) 2-clustering using trajectory endpoints. (c) Second singular vector of transition matrix.

Properties and extensions

- Clustering into spheres is preferred by Euclidean norm but other distance functions could be used.
- Interpretations for continuous time and continuous space available.
- Isotropic scaling of space and time has no effect.
- Clustering results are frame-independent.
- Weights can be included as coefficients for ||x_{i,t} c_{k,t}||², which could depend on i, t, or k (e.g. discount distances far in the future).
- Missing data can be easily handled (restrict computations of C_k to available data per time-slice).
- Treatment of almost-invariant sets also possible.
- Normalized entropy can serve as a measure for classification uncertainty.

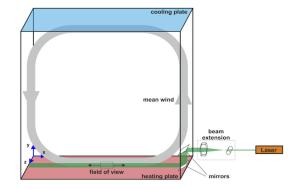
Application I: global ocean drifters



2267 drifters in 2005–2009 with minimum lifetime of one year and monthly output of positions. Approximation of K = 5 clusters.

Kathrin Padberg-Gehle

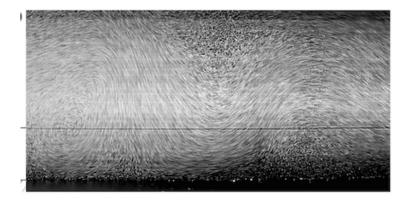
Application II: turbulent convection



Experimental set-up in Barrel of Ilmenau, Germany.

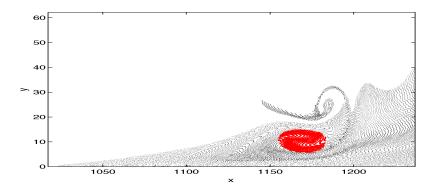
Cell dimensions: 2.5 m (H) × 2.5 m (W) × 0.65 m (D); temperature difference: 10K $T_{bot} = 35^{\circ}$ C $T_{top} = 25^{\circ}$ C; Rayleigh number $Ra \approx 1.5e10$

Coherent structures



Coherent plumes visible in experimental data (du Puits et al, PRL 2014)

Trajectory-based coherent sets



Coherent set in convection flow (extracted from PIV velocity data) - using only the trajectories shown.

Joint work with Ronald du Puits, Ilmenau

Conclusion and future research

- Computational study of coherent flow structures
- Optimization problems within transfer operator and clustering framework
- Both coherent sets and boundaries can be extracted
- Many applications, mathematical and computational challenges

Conclusion and future research

- Computational study of coherent flow structures
- Optimization problems within transfer operator and clustering framework
- Both coherent sets and boundaries can be extracted
- Many applications, mathematical and computational challenges
- Automatic extraction of many coherent sets [Karrasch, Huhn, Haller 2014; Ma, Bollt 2013]
- Systematic comparison with other approaches
- Active transport, inertial particles
- Early warning signals for bifurcations

Conclusion and future research

- Computational study of coherent flow structures
- Optimization problems within transfer operator and clustering framework
- Both coherent sets and boundaries can be extracted
- Many applications, mathematical and computational challenges
- Automatic extraction of many coherent sets [Karrasch, Huhn, Haller 2014; Ma, Bollt 2013]
- Systematic comparison with other approaches
- Active transport, inertial particles
- Early warning signals for bifurcations

Thank you!

kathrin.padberg@tu-dresden.de