The Assessment of Marine Oil Spills with Lagrangian Descriptors and Remote Sensing

V. J. García-Garrido

joint work with A. Ramos, A. M. Mancho, J. Coca, S. Wiggins

3rd International Workshop on Nonlinear Processes in Oceanic and Atmospheric Flows

6 - 8 July 2016

Study oil spill due to the sinkage of the Oleg Naydenov fishing trawler off the coast of Gran Canaria on 14th April 2015

Objectives

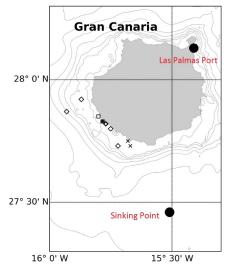
Use Lagrangian Descriptors and Remote Sensing to:

- Understand currents and transport in the Canary Islands.
- Address potential risk of the oil spill and its fate.

Provide an interdisciplinary framework for the assessment and effective management of future spills

Methodology

- Determine Lagrangian skeleton in phase space (the ocean).
- Evolve oil spills with a contour advection algorithm.
- Validate with Satellite Imagery and Emergency Services sightings.


Event

Oleg Naydenov caught fire on 11th April 2015 in Port of Las Palmas (with 1500 tons of IFO 380 fuel)

Spanish authorities **towed** the ship **out of the port** and it **sank** on the night of the 14th April

Oil slicks were spotted at sea on the 16th April

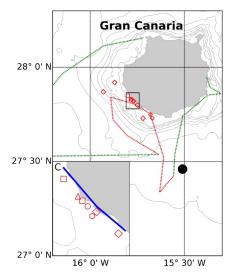
In Situ Observations

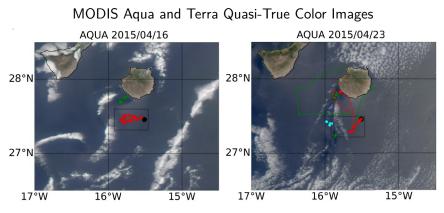
Air-Sea Operatives and Ground Emergency Services Monitor the Spill Evolution in SW Gran Canaria

On 23rd April spill hits the coast

Search & Rescue Aircraft Paths

(23rd April - 10th May)


Green Sections - No Oil Reported


Red Sections - Reported Oil

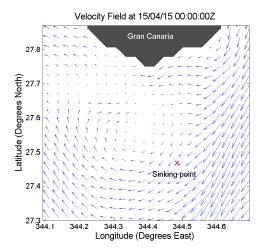
Coast Guard Helicopter Track

(23rd April - 10th May) Blue line

Symbols: Confirmed Oil Sightings

Remote Sensing Reflectance (Rrs) Spectra

- Red Points Confirmed Oil Spill (short wavelengths with Rrs < 0.005)
- Green Points Clean Water
- Cyan Points Doubts


Potential risk of sinking point and fuel arrival to the coast

Instantaneous velocity fields provide incomplete picture

Dynamical Systems Tools reveal a template to understand ocean transport (Oil spill evolution)

Model Fuel slicks:

- Release (radius 6km) every 24h.
- From Satellite Imagery.

Dynamical System (Passive Tracer Advection)

Daily velocity field with 2 km resolution obtained from COPERNICUS IBI:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}(\mathbf{x}(t), t)$$

On a sphere of radius R this yields:

$$\frac{d\lambda}{dt} = \frac{u(\lambda,\phi,t)}{R\cos\phi} \quad , \quad \frac{d\phi}{dt} = \frac{v(\lambda,\phi,t)}{R}$$

- λ is longitude and ϕ latitude.
- u and v are the zonal and meridional components of the velocity respectively.

Dynamical System defined on a finite space-time grid

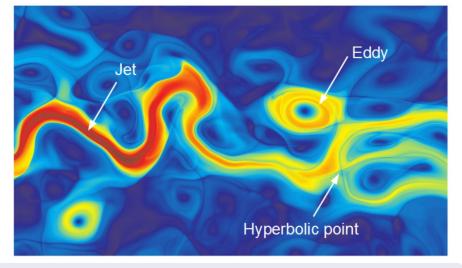
- Bicubic Spatial Interpolation, Third order Lagrange Polynomials in time.
- Trajectory evolution with Cash-Karp Runge-Kutta 4(5) scheme.
- Advection algortihm to evolve sets of initial conditions.

(Dritschel (1989), Mancho et al. (2003))

Poincaré's idea

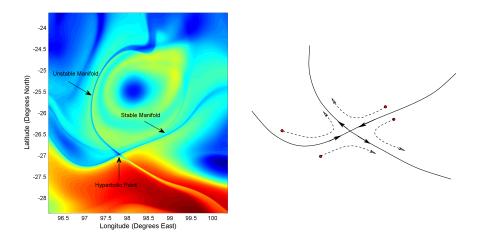
Find geometrical structures that divide phase space into regions of trajectories with qualitatively distinct dynamical behaviors

Lagrangian Decriptors (\mathcal{M} function)

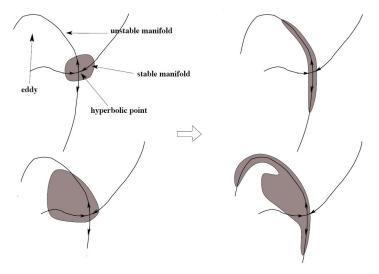

$$\mathcal{M}(\mathbf{x}_0, t_0, \tau) = \int_{t_0-\tau}^{t_0+\tau} ||\mathbf{v}(\mathbf{x}(t; \mathbf{x}_0), t)|| dt$$

For any initial condition $\mathbf{x}_0 = \mathbf{x}(t_0)$, computes the arc length of the trajectory as it evolves backwards and forwards in time for a period τ .

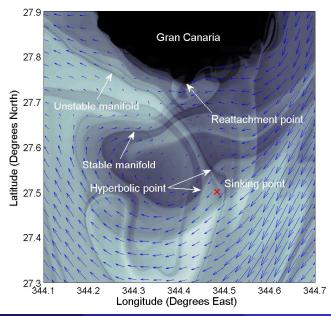
This method reveals the geometrical skeleton of structures that govern transport and mixing processes in phase space (in this case, the ocean)


References:

 A. M. Mancho, S. Wiggins, J. Curbelo, and C. Mendoza. Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems. Commun. Nonlinear Sci. Numer. Simul., 755 18(12), 3530-557, 2013.

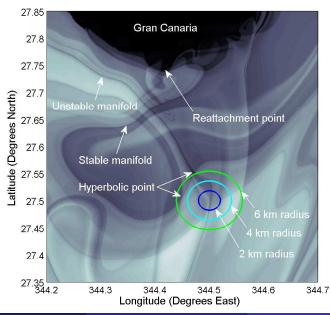

M draws the global dynamics of Geophysical Flows, detecting simultaneously hyperbolic regions defined by the invariant stable and unstable manifolds, elliptic regions corresponding to vortices, and parabolic regions related to jet-like structures.

- Singular features of \mathcal{M} (Stable and Unstable Manifolds).
- Increasing τ correlated with richer phase space structure.

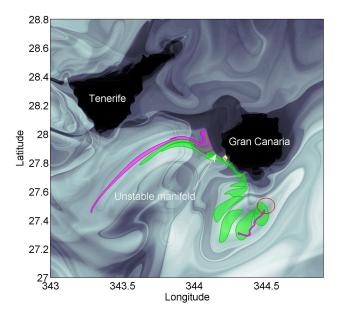


Dynamics of fuel slicks:

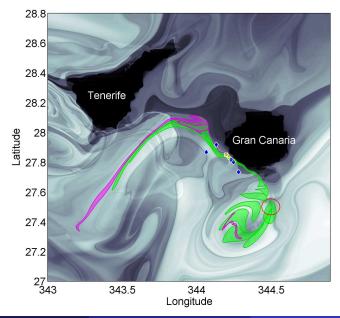
- Stretching along the unstable manifolds.
- Contraction along the stable manifolds.
- Circulation around vortices.


${\cal M}$ function for $\tau=15$ days on the 15th April 2015

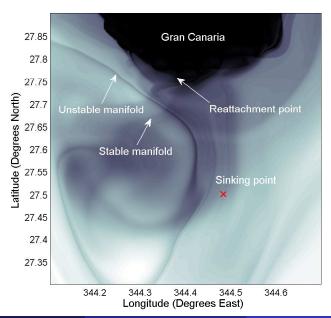
3rd NPOAF



Model of Fuel Slicks (6km radius every 24h + Satellite Imagery)



3rd NPOAF


Fuel arrival to the coast of Gran Canaria on the 23rd April 2015

Comparison with Oil Sightings on the 25th April 2015

Operational Capability (M for $\tau = 5$ days on the 16th April 2015)

Conclusions

• Oleg Naydenov oil spill is described from three perspectives:

- In Situ Observations.
- Remote Sensing.
- Dynamical Systems Theory.
- **Potential danger of the sinking point** highlighted by Dynamical Systems tools (reattachment point at the coast and a stable manifold close to the sinking point).
- The evolution of fuel spills confirms that the **stable manifold acts as a highway carrying the spill to the coast** of Gran Canaria.
- In Situ observations and Remote Sensing oil detection are confirmed by Dynamical Systems techniques.

Provide an interdisciplinary framework for the assessment and effective management of future spills

V. J. García-Garrido, A. Ramos, A. M. Mancho, J. Coca, S. Wiggins. An Interdisciplinary Approach for a Real-Time Response to a Marine Oil Spill. Preprint.

Thank you for your attention.

Questions?

Review of Lagrangian Techniques:

Distinguished Hyperbolic Trajectories (DHT)

- K. Ide, D. Small, S. Wiggins. Distinguished hyperbolic trajectories in time-dependent fluid flows: Analytical and computational approach for velocity fields defined as data sets, Nonlin. Processes Geophys., 9, 237-263, 2002.
- A. M. Mancho, D. Small, S. Wiggins, K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vectors fields. Physica D 182 (3), 188-222, 2003.
- A. M. Mancho, D. Small, S. Wiggins. Computation of hyperbolic trajectories and their stable and unstable manifolds for oceanographic flows represented as data sets. Nonlin. Processes Geophys., 11, 17-33, 2004.
- J. A. J. Madrid, A. M. Mancho, Distinguished trajectories in time dependent vector fields, Chaos 19 ,013111, 2009.

Lagrangian Descriptors (LD)

- C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Phys. Rev. Lett. 105 (3), 038501, 2010.
- A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Commun. Nonlinear Sci. 18 (12), 3530-3557, 2013.

Lagrangian Coherent Structures (LCS)

- G. Haller. Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10, 99-108, 2000.
- G. Haller, G. Yuan. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352-370, 2000.

Finite Size & Finite Time Lyapunov Exponents (FSLE & FTLE)

- J. M. Nese. Quantifying local predictability in phase space. Physica D, 35, 237-250, 1989.
- E. Aurell, G. Boffeta, A. Crisanti, G. Paladin, and A. Vulpiani. Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys. A :Math. Gen., 30, 1-26, 1997.
- S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties of Lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, 271-304, 2005.

Geodesic and Variational Theory of LCS

- G. Haller, F. J. Beron-Vera. Geodesic theory of transport barriers in two-dimensional flows. Physica D, 241(7), 1680-1702, 2012.
- M. Farazmand, G. Haller. Computing lagrangian coherent structures from their variational theory. Chaos, 22, 013128, 2012.

Trajectory Complexity Measures

 I. I. Rypina, S. E. Scott, L. J. Pratt, and M. G. Brown. Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlin. Proc. Geophys., 18, 977-987, 2011

Mesohyperbolicity Measures and Ergodic Partitions

- N. Malhotra, I. Mezic, S. Wiggins. Patchiness: A New Diagnostic for Lagrangian Trajectory Analysis in Time-Dependent Fluid Flows. Int. J. Bifurcation Chaos 08 (06), 1053-1093, 1998.
- I. Mezic, S. Wiggins, S. A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos, 9(1), 213-218, 1999.

Transfer Operator Methods and Almost-Invariant Sets

- G. Froyland, M. Dellnitz. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM J. Sci. Comput. 24, 1839-1863, 2003.
- G. Froyland, K. Padberg. Almost-invariant sets and invariant manifolds -Connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D 238, 1507-1523, 2009.