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Problem formulation
Motivation

Vortices are omnipresent in the ocean playing an important role in
generating synoptic and mesoscale dynamics. Strong vortices are
often observed near bottom irregularities. Therefore, it is naturally
that problems concerning vortices interacting with topography
have been attracting a lot of attention. Different approaches are
exploited to get insights into such interactions.
The point vortex model presents possibly the simplest and most
accessible approach, allowing one to formulate closed ordinary
differential equation systems that govern the point-vortex
dynamics. These systems can vary in complexity given varied
vortex interactions in question.
Another approach represents a vortex structure as a closed region
with some constant distributed vorticity comprised within it.
Then, contours comprising different vorticities evolve according to
the vorticity equation.The contours can merge or decompose
creating new contours.
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Problem formulation
Configuration in question

We study a compensated two-layer vortex pair, which is
conventionally known as a heton, encountering a submerged
bottom cylindrical feature.
First, we analyze the evolution of an unstable heton with the use
of the contour dynamics technique. This case has no analogy in the
point vortex model.
Then, given a stable heton, we delineate typical regimes of the
system dynamics with the use of the point vortex model and then
compare it to the similar dynamics observable with the help of the
contour dynamics techniques
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Problem formulation
Configuration in question

We assume the quasi-geostrophic, rigid lid, f -plane approximations
applying for a fluid flow with two layers of constant densities. The law
of potential vorticity conservation is valid in each layer,

Diqt
Dt

= 0, (1)

with
q1 = ∆ψ1 +

f

H1
ζ, q2 = ∆ψ2 +

f

H2

(
h̃− ζ

)
, (2)

where ∆ is the two-dimensional Laplace operator, ψi is the
stream-function equal to the pressure anomaly pi in the i-th layer (
i = 1 corresponds to the upper layer) of the depth Hi and density ρi, f
is the Coriolis parameter, h̃ is the bottom perturbation, and
ζ = f

g∗ (ψ2 − ψ1) is the perturbation of the interface between the layers

with g∗ = g (ρ2−ρ1)
ρ2

being the reduced gravity acceleration.
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Problem formulation
Configuration in question

The stream-functions ψi can be represented through two auxiliary
stream functions: barotropic Ψ and baroclinic Ψ′ as follows

ψ1 = Ψ− H2

H
Ψ′, ψ2 = Ψ +

H1

H
Ψ′, (3)

where

H∆Ψ = H1q1 +H2q2 − fh̃, ∆Ψ′ − k21Ψ′ = q2 − q1 − f
h̃

H2
, (4)

and k1 = 1
LD

= f
(

H
g∗H1H2

)1/2
, H = H1 +H2 is the total depth, and LD

is the internal Rossby radius of deformation.
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Problem formulation
Configuration in question

In this paper, we are interested in a bottom perturbation due to an
isolated cylindrical feature of a constant radius a, and constant height

h, i.e. h̃ =

{
h, r ≤ a,
0, r > a,

located in the bottom layer of the two-layer

flow. The corresponding barotropic and baroclinic stream functions
comply with

H∆Ψ0 = −fh, ∆Ψ0
′ − k21Ψ0

′ = − fh
H2

. (5)

Hence the solutions

Ψ0 = −fha
2

4H

{ (
r
a

)2
, r ≤ a,

1 + 2 log r
a , r > a,

Ψ0
′ = − fh2

k21H2

{
1− ak1I0 (k1r)K1 (ak1) , r ≤ a,
ak1I1 (ak1)K0 (k1r) , r > a.

(6)
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Problem formulation
Finite-core vortex patches

We distribute two initially circular patches with constant vorticities Πi

in each layer such that the vorticity from the upper layer is
compensated by the vorticity in the lower layer, i.e. H1Π1 +H2Π2 = 0.
Thus, the total potential vorticity of the two-vortex structure is equal
to zero.
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Problem formulation
Point-vortex model

Here, we introduce the vortex component by defining point vortex
perturbations in the layers. We consider the following two-layer vortex
structure: one point vortex of strength µ1 arranged in the upper layer,
and the other one with strength µ2 in the lower layer, so

qi = fµiL
2
0δ (x− xi) δ (y − yi) , (7)

where δ (·) is the Dirac delta, x, y are the Cartesian coordinates, and
xi, yi are the i-th vortex’s coordinates, and L0 is a characteristic
horizontal scale.
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Problem formulation
Point-vortex model

Governing equations for the vortex trajectories ensue

dxα
dt

= −γ
2

H

µ3−αH3−α
r12

(yα − y3−α)

[
1

r12
−K1 (r12)

]
+

h

H
yαΦα (rα)

dyα
dt

=
γ2

H

µ3−αH3−α
r12

(xα − x3−α)

[
1

r12
−K1 (r12)

]
−

h

H
xαΦα (rα) , (8)

where rα =
(
x2α + y2α

)1/2, α = 1, 2, r12 =
(

(x1 − x2)2 + (y1 − y2)2
)1/2

.
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Unstable heton
Finite-core vorticity patches
We consider an aligned heton. For weak stratification, for instance
γ = 1.8, there appears an unstable azimuthal mode featuring two
separate dominant vorticity patches in each layers. Because of the
sufficient nonlinearity, two distinct two-layer vortex pairs form.
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Unstable heton
Finite-core vorticity patches
Detailed evolution of a hot heton.
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Unstable heton
Finite-core vorticity patches
If stratification is weaker, the effect also becomes more subtle (γ = 14).
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Stable heton – Unbounded dynamics
Point-vortex model

To obtain similar regimes of motion in the both approaches, one needs
to strengthen stratification such that a heton becomes stable. To start,
we deal with the point-vortex system. The physical configuration
H1 = H2 = 1/2, h = 0.1, R = 3. The figures depict vortex trajectories
for different initial distances between the vortices as
µ1 = −µ2 = µ = −21, y1 = y2 = y = −7, x1 = −x2 = x.
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Stable heton – Unbounded dynamics
Point-vortex model
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Stable heton – Unbounded dynamics
Finite-core vorticity patches
Finite-core vorticity patch model. Instantaneous contours of a cold
heton consisted of initially circular vortex patches of unit radii as
γ = 1, y = −7 for given x. The consequent contours are depicted over a
unit time interval.
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Unstable heton – Unbounded dynamics
Finite-core vorticity patches

However, if the vorticity patches are less stable, the point vortex model
cannot reflect the dynamics correctly. The next figure demonstrates an
example of complex dynamics of the vorticity patches with the same
initial conditions , except that the potential vorticity of the heton’s
vortices is decreased by half.
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Unstable heton – Unbounded dynamics
Finite-core vorticity patches

(POI FEB RAS, IWP RAS) Heton-cylinder interaction Ryzhov, Sokolovskiy 17 / 24



Stable heton – Bounded dynamics
Point-vortex model

The previous section is primarily concerned with the unbounded
dynamics of the two-layer self-propagating vortex structure. This
dynamics is intrinsic to both the finite-core vorticity patch model, and
the point-vortex model. The finite-core vorticity patches, if surviving
the interaction with the cylindrical obstacle, can behave qualitatively
very similar to the point-vortices. When the vorticity patches undergo
significant deformation and redistribution of vorticity, they cannot
anymore sustain their self-propulsion, which leads to them being
trapped by the topography. This dynamics is clearly not present in the
point-vortex model. However, a regime of entrapping of both vortices
without being significantly deformed is possible in the both models
under consideration. In this section, such a type of the heton dynamics
near the topographic feature is under study.
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Stable heton – Bounded dynamics
Point-vortex model
The bounded motion of a point vortex heton with a symmetrical initial
configuration. The solid (dashed) trajectory corresponds to the
upper-layer (lower-layer) vortex. µ = 21, y = −2, x = −0.5.
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Stable heton – Bounded dynamics
Point-vortex model

The number of intersections between vortex trajectories (for the
positive µ1 and negative point vortex µ2 of the heton) and the y-axis
depending on the starting y-coordinate as µ = 21, x = 0.01. 300 evenly
distributed initial conditions over a different interval on the y-axis: (a)
y ∈ [−10, −7]; (b) y ∈ [−8.5, −7.6]; (c) y ∈ [−8.5, −8.2].
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Aligned heton – Mixed dynamics
Point-vortex model

Examples of an aligned heton’s trajectories demonstrating the irregular
behavior. Different initial conditions result in generally unpredictable
shapes of heton trajectories. (a) µ = 300, y = −10; (b)
µ = 300, y = −20.
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Aligned heton – Mixed dynamics
Finite-core vorticity patches

Now, let us demonstrate the analogous dynamics realized in the
continuous vortex model.
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Aligned heton – Mixed dynamics
Finite-core vorticity patches

The upper row shows the trajectories of the vorticity patches’ centers
as x = 0 and given y. The lower one shows the distances between the
centers of vorticity of the upper layer vortex patches and the obstacle’s
center.
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Thank you very much for your attention!
Many thanks to the organizing committee!
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