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4 Slides: 



Outline: 
Fluid analysis:  Eulerian – Lagrangian 

Eulerian Measures – KE, vorticity, OW, 
transversality, RROC, shear, mobility 

Data Analysis - techniques 
Data Manifolds – N-dimensions 
Clustering 
Applying Clusters to Data 

Future Work 
Seeking correlations between Eulerian 

and Lagrangian 
 

 



ChesROMS – 2006 simulated year  
ChesROMS simulated by 
      Kayo Ide, Bin Zhang (CSCAMM-
UMD) 
Modified ChesROMS grid – 1km x 1km, 20 

sigma layers, rectilinear  
Simulated every 10 minutes 
Collected every hour 
Mouth of Bay center +/- 60km x 80km 
47,000 locations per layer per day 

       



Eulerian Measures 
Kinetic Energy   
Vorticity 
Okubo-Weiss (Q-crit, shear) 
Transversality 
Relative Rate Of Change 
V-Slow 
V-Fast 
Velocity Asymmetry 
Transverse Shear 

 



Eulerian Measures 
 3 Types: 

 Instaneous (averaged over 24 hours) 
Measure spatial derivatives via velocity gradient tensor (avg 24 hours) 
Measure temporal derivatives, integrals, moments (24 hour window) 

 References: 

 McIlhany, K. L., Wiggins, S., “Optimizing Mixing in Channel Flows: Kinematic Aspects 
Associated with Secondary Flows in the Cross-Section“, Microfluidics and Nanofluidics, 10, 
2011 

 McIlhany, K. L., Mott, D., Oran, E., Wiggins, S., “Optimizing mixing in lid-driven flow designs 
through predictions from Eulerian indicators“, Phys. Fluids, 8-23, 2011 

 McIlhany, K. L., Wiggins, S., "Eulerian indicators under continuously varying conditions“, 
Phys.Fluids, 24-7, 2012 

 Mcilhany, K. L., Guth, S., Wiggins, S., ”Lagrangian and Eulerian Analysis of Transport and 
Mixing in the Three Dimensional, Time Dependent Hill's Spherical Vortex”, Phys. Fluids, 27:6, 
2015 

 ELKI and Schubert, E. and Koos, A., Emrich, T., Zufle, A., Schmid, K.A., Zimek, A., “A Framework 
for Clustering Uncertain Data”, http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf, 

 Haller, G. “Objective Definition of a Vortex”, J. Fluid. Mech., 2005. 
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Geo-Referenced Chesapeake Bay Mouth 
• Full Chesapeake Bay: 

• 180 miles North-South 
• ~50 miles East-West 
• Most narrow 5 miles across 
• 11,500 miles coastline (fractal-like) 
• Average depth, 8.4m 
• Maximum depth 24m along “spine” 

• Chesapeake Bay Mouth: 
• Origin located ~half along mouth 
• +/- 80km North-South 
• +/- 60km East-West 
• Grid points every 1km on rectilinear grid 

 
 
 
 
 
 
 
 
 



Eulerian Measure #1:   
Kinetic Energy 
 
  • L2-norm velocity  

• Not the material derivative 
• Overall magnitude measure 



Eulerian Measure #2:   
Vorticity –  

• Measure of field curvature 
• Instantaneous 
• Magnitude dependent 
•   
 
 



Eulerian Measure #3,4,5:   
Okubo-Weiss – OW  

• Measure competition between 
strain and rotation 

• Instantaneous 
• Gradient dependent 
 
Sigma^2 = shear+normal strain 
(3D) Q = ½ (Omega^2-Sigma^2) 
 
 



Eulerian Measure #6:   
Transversality –  

• Angular spread of velocity vs. 
average velocity direction 

• Angles folded from 0-90 
• Insensitive to magnitude 
•   

 



Eulerian Measure #7:   
Relative Rate of Change (RROC) 

• Rate of jitter of a velocity vector 
• Insensitive to magnitude 
• Not the acceleration 



Eulerian Measure #8,9,10:   
Velocity – Slow, Fast, Asymmetry  
• V-Slow – average of velocity magnitude 
• V-Fast – magnitude of velocity average 
• Vel-asymmetry – relative degree of   

     frustrated transport 
• Vel-asym – bounded from 0 to 1 



Eulerian Measure #11,12:   
Transverse Shear –  

• Transverse component of the 
spatial gradient of the velocity 
magnitude 

•   
 
 



Position index 
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Position index 

KE 
Transv 
Vel asym 
RROC 
V-fast 

“DNA” Plots • Shows N-dim 
data in one plot  
per location 
per time 

• Exposes Data 
Clusters 



N-dimensional Data as a Point Cloud 
Visualize: 1D, 2D, 3D, 4D … end of the road 



And now for something completely different 

Each location, each time consider as data 
63million data in total for 2006 Chesapeake Bay 

Mouth 
Tend to think of data as geo-referenced 
Deck of cards  
Shuffle the cards 
Histogram the data 
Look for re-occuring patterns within the SPace of 

Eulerian MeasureS (SPEMS) 
Flow types categorized by these patterns 



Eulerian Measures 



Eulerian Measures 



Data Analysis – Histograms and Cuts 
Collect Data 
 Typically, we histogram versus some variable 
 If LUCKY, we see separated distributions 
 Apply a “cut” (threshold) to value to 

separate and classify data 
 f(x,y) – 2 dimensional 
 f(x,y) = C – 1-dim curve 
 f(x,y,z,…) = C – (N-1) dimensional hypersheet 
 

• Instead of partitioning data via 
cuts to isolate features 

• Seek data clusters directly within 
the space 



Building a 
space that 
contains data: 
 
Start with one 
dimension 
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Building a 
space that 
contains data: 
 
Start with one 
dimension 

 



Building a 
space that 
contains data: 
 
Now add 
another 
dimension (2D) 



Building a 
space that 
contains data: 
 
Add some data 



Building a 
space that 
contains data: 
 
Add more data 
(different) 



Building a 
space that 
contains data: 
 
Histogram 
along one 
variable 
 
Record bin 
address 



Building a 
space that 
contains data: 
 
Repeat for 
each variable 
used 



Building a space 
that contains 
data: 
 
Form a single 
partition bin 
address from to 
set of individual 
bin addresses 
 
Creates a single 
partition ID 



Building a 
space that 
contains data: 
 
Only some 
partitions are 
populated 



Building a 
space that 
contains data: 
 
Only some 
partitions are 
populated 



Building a 
space that 
contains data: 
 
Before the 
analysis, all the 
data looks the 
same 



Building a 
space that 
contains data: 
 
Going to 3-dim 



Building a 
space that 
contains data: 
 
More partitions 



Building a 
space that 
contains data: 
 
 



Building a 
space that 
contains data: 
 
Find the 
populated 
partitions 



Building a 
space that 
contains data: 
 
Data neutral 
initially 



Building a 
space that 
contains data: 
 
End goal: 
Separate the 
data types 
within the 
space (SPEMS) 





Reducing the Data 
 from data points  
 to partitions 

 Starting from partition IDs 
 Histogram partition IDs 
 Set a threshold for the data to retain 

(arrow) 
 Remove all partitions with lower 

populations (empties and noise) 
 Map the remaining partition IDs to a 

serial index 
 Assign the populations of the partitions 

to a weight value to each partition 
 From here on, the “data” will be the 

partitions, NP – Orders of Magnitude less 



Process Outline 

Collect Data 
Choose variables 
Histogram each 

variable 
Set partition address 

(ID) 
Remove lower 

populations 
Remap partition IDs 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Start in 0-dims 
(point) 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Start with one 
dimension 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Extrude our 
point along the 
new direction 
by one unit 
length (line) 



Building an  
N-dim first nearest 
neighborhood: 
 
Create neighbors 
by copying the 
center one 
forward and one 
backward along 
new direction 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Choose a new 
direction (2D) 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Extrude the 
center line into 
a unit square 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Extrude the 
neighboring 
lines as well into 
2D 



Building an  
N-dim first nearest 
neighborhood: 
 
Copy the three unit 
squares one set 
forward and one 
backward along 
new direction 
 
Two different types 
of neighbors (share 
a line-yellow and a 
point-blue) 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Going into 3D 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Extrude the 2D 
neighborhood 
along new 
direction 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Center set is 
copied one 
forward and 
one backward 



Building an  
N-dim first nearest 
neighborhood: 
 
3D first nearest 
neighbors 
(cutaway) 
 
3 types: planes, 
lines, points 



Building an  
N-dim first nearest 
neighborhood: 
 
yellow = facial 
neighbors (2D) 
blue = lines (1D) 
green = points 
(0D) 
 
All share a 
common 
geometry with 
the center 



Building an  
N-dim first 
nearest 
neighborhood: 
 
once more… 



Building an  
N-dim first 
nearest 
neighborhood: 
 
Distances: 
How far away is 
the corner from 
the center? 
 
In 4d? - problem 



Building a 
space that 
contains data: 
 
First Nearest 
Neighbors 
(1NN) 



Building a 
space that 
contains data: 
 
First Nearest 
Neighbors 
(1NN) 



Matrices Calculated: 

Delta-r^2 – Euclidean distance between two 
partitions 

1st Nearest Neighbor (1NN) – 0/1 for any 
partitions within neighborhood 

Delta-L^2 – Path length between two partitions 
(connected) 

Line-Of-Sight (LOS) – 0/1 for any partitions within 
Line-Of-Sight of each other 



Matrices – Logical Array Hinge 
 Form the 1NN matrix: 

 Each row represents a single partition 

 Each column are all of the other partitions 

 for each partition, find all other partitions within 
+/-1 of individual variable bin addresses  

 Assign a “1” for the neighbors 

 Form the Path Length matrix: 
 Starting from a partition 

 Find all 1NN of initial partition 

 “Swing” 1NNs to search for new rows 

 Find 1NN of the 1NN = 2NN 

 Repeat until done, store the path length  

 Logical Array Hinge 

 Form the Connection Matrix 
 All partitions connected via a path  

 Replace path lengths with “1” 

 

 



Clusters - Hierarchy 

Global -          based on weights, 
Connected – all partitions connected via a 

path, 
Line of Sight – LOS – all partitions within view 

of each other 
Path Length – based on weights, 
Simple nearest neighbors (1NN, 2NN, 3NN) 
Magnitude sorted (simplest) 



Global Delta-r^2 + Path Length 

LOS 





















Other 
Techniques 

 N-dim Cluster 
algoritms: 
K-Means 
K-Medoids 
DBSCAN 
EM 
ELKI (package) 

 



ELKI 



Clustering  
 Assemble data carefully 
 Find unique partitions 
Calculate delta-r,L matrices 
Calculate 1NN, LOS, Connection 
 Assign cluster #’s 

 

 
Global wgtd ID      
Connected ID        
Connected wgtd  
LOS ID                     
LOD wgtd ID          
Magnitude ID        
 
 
 
Single Unique Cluster ID -  #  #   #   #   #  #   #   #    #   #   #   #   #   
 



Chesapeake Bay – Magn. Simple Clustering 
4D – transversailty (  ), V-slow, RROC, V-asym 



Lagrangian Trajectories with Eulerian Histories 
  - find Lagrangian features – seek correlations 

 



Outline: Fluid analysis:  Eulerian – Lagrangian 
Eulerian Measures – KE, vorticity, OW, 

transversality, RROC, shear, mobility 
Data Manifolds – N-dimensions 
Clustering 
Applying Clusters to Data 
Tracking Flow Clusters 
Tracking Particles 
Eulerian History Applied to Lagrangian 

Trajectories 
Eulerian – Lagrangian Correlation 

 

 

Future Work: 



Questions? 

Acknowledgements:  ONR grants (multiple) – 
Reza Malek-Madani 



SPEMS – Chesapeake Bay Mouth  
  
Seven Dimensions 
KE 
Vorticity 
Okubo-Weiss 
Transversality (alpha) 
Transverse Shear (Beta) 
Relative Rate Of Change (RROC) 
Velocity-Asymmetry 

Took upper 70% of data to reduce computational load 
(for this talk only) 



Kuroshio – Transversality 



 



 



Line-Of-Sight search (LOS) 

Problem with the  
Line-Of-Sight approach: 
 
Currently, LOS is established 
By demanding the path  
Length be exactly the  
Shortest distance from 
Point A(green) to B (red). 
 
Problem:  There are multiple 
Paths with the exact sqme 
Length between A  B 
 
“Interior Hull” problem 
(see following slides) 
 



Line-Of-Sight search (LOS) 
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Line-Of-Sight search (LOS) 

All pathes  within the  
Trapezoid have the same  
Path length between 
A  B 
 
 
Problem:  what if one of  
The interior partitions is  
Empty (no data present) 
Which makes it  
Equivalent to a “blocker” 



Line-Of-Sight search (LOS) 

Same problem represented in 3D 
 
 
The optimal path length is the same 
As taking the path along the edge 
Of the 3D trapezoid. 
(next slides) 



Line-Of-Sight search (LOS) 



Line-Of-Sight search (LOS) 
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