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Dickey 2003
Eddy permitting models

Moorings

IN-SITU

satellite

Outline

Few and sparse information 
 from in-situ data

satellite monitor surface 
physics only

-- lateral exchange processes (“eddy fluxes”)
-- upper-ocean vertical exchange processes 
(“vertical exchange”)

Quantitatively prediction

need to rely on simulations for 
 main unknown processes:
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Moorings

Eddies are responsible for

as preferential energy pathways : 
transferring PE to KE, “negative” viscosity regime,...

as ocean probes : drag water parcels, 
influencing resource/tracer distributions, 
enhancing biological activities,...



Outline

Role for assimilation :

correct initial ocean state towards a more realistic description 

include possible missing features caused by poor resolution

at any length-scale? Whatʼs its performance at mesoscale level?

1) NEMO free simulation 
at 1/4
10y run 2003-2012

2) C-GLORS reanalysis of NEMO 
simulation at 1/4
10y 2003-2012
(Storto et al. 2014)

3) Satellite/scatterometer 
dataset at 1/4
10y run 2003-2012
(AVISO/OSCAR datasets)

Quantitative assessment of variability 
over three datasets 
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Global ocean basin



SST relaxation scheme towards 
NOAA ¼ Analyses 

3Dvar assimilation data :

- in-situ temperature and 
salinity (XBT, CTD, Argo, 
Moorings, etc. assembled 
by Ifremer) 

- along-track satellite 
altimetry observations 
(Jason-2, Altika and 
CryoSat2 by CLS/AVISO )

SSS relaxation scheme to 
monthly objective analysis of 
MetOffice  EN4

C-Glors exploits a 3Dvar assimilation scheme (Storto et al. 2015) with updates from 
multiple datasources.
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OceanVar assimilation scheme

Corrections are added to the surface/sub-surface salinity and 
temperature (Cooper et al. 1996) 



A plethora of schemes in literature

Anticyclonic and cyclonic eddies of subtropical origin

in the subantarctic zone south of Africa

Michel Arhan, 1 Sabrina Speich, 2 Christophe Messager, 1 Guillaume Dencausse, 1,3

Rana Fine, 4 and Marie Boye5

Received 16 March 2011; revised 12 July 2011; accepted 27 July 2011; published 3 November 2011.

[1] Two eddies, one anticyclonic and the other cyclonic, intersected in the Subantarctic

Zone south of South Africa during a hydrographic transect, are described using a large set

of measurements including full depth hydrography, Acoustic Doppler Current Profiler

velocities, biogeochemical tracers, air‐sea fluxes and altimetric sea surface height.

Both eddies have a subtropical origin. The anticyclone is an Agulhas ring with convected

core water of ∼12°C, and swirl velocities of 1 m s−1. It was 9.5 months old when

sampled and had crossed the Agulhas Ridge. Though sampled in summer, it was releasing

∼200 W m−2
(sensible plus latent heat flux) to the atmosphere. It was observed adjacent

to the Subantarctic Front, illustrating the usual encounters of such structures with this

front. The cyclone, marked by pronounced low oxygen and CFC anomalies revealing an

origin at the continental slope, was 4.5 months old. It had swirl speeds of 0.3 m s−1,

and was coupled with the anticyclone when observed. From their kinematics and water

mass properties both structures were found to transport subtropical water down to ∼900 m,

the water trapped below this depth being either from the northern Subantarctic Zone,

or local water. The two structures illustrate the capacity of eddies in the region to transfer

subtropical and alongslope water properties into the Subantarctic Zone.

Citation: Arhan, M., S. Speich, C. Messager, G. Dencausse, R. Fine, and M. Boye (2011), Anticyclonic and cyclonic eddies of

subtropical origin in the subantarctic zone south of Africa, J. Geophys. Res., 116, C11004, doi:10.1029/2011JC007140.

1. Introduction[2] Lutjeharms [1988] first suggested that the meridional

propagation of mesoscale eddies at distinct sectors of the

Subtropical Front (STF), such as those bordering the west-

ern boundary currents, might be an important process for

the transport of heat into the Southern Ocean. The oceanic

domain south of South Africa, where the Agulhas Current

system abuts on the Antarctic Circumpolar Current (ACC),

should naturally be counted among such sectors. In agree-

ment with this view, Dencausse et al. [2011] recently

observed that, due to the intense mesoscale activity of that

region [e.g., Boebel et al., 2003], the STF, which is present

at 38°S–42°S in the eastern South Atlantic and western

South Indian oceans, is interrupted between about 12°E

and 23°E.[3] This ∼10‐degree longitudinal interval appears

preferential pathway for mesoscale structures H

warm eddies of subtropical origin have sometimes been

observed to enter the Subantarctic Zone (SAZ) located

between the STF and the Subantarctic Front (SAF) of the

ACC [Lutjeharms and Valentine, 1988; Arhan et al., 1999;

Gladyshev et al., 2008]. Most of these observed mesoscale

features have been anticyclones, either Agulhas eddies shed

southward by the meandering Agulhas Return Current, or

Agulhas rings formed at the Agulhas Current retroflection.

However, as anticyclones tend to propagate equatorward

under the b‐effect, Agulhas rings that enter the SAZ (located

poleward of their formation region) are not

Dencausse et al. [2010] observed that th

2 per year) often result from

rings at the northea
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Gulf Stream eddy characteristics in a high-resolution ocean model

Dujuan Kang1 and Enrique N. Curchitser1,2

Received 6 November 2012; revised 12 July 2013; accepted 15 July 2013; published 13 September 2013.

[1] A detailed statistical study of the mesoscale eddy activity in the Gulf Stream (GS)
region is performed based on a high-resolution multidecadal regional ocean model hindcast.
An eddy detection and tracking method that can be used to capture eddy features from large
datasets is presented. This method is applied to the 50 year model hindcast within a domain
with the most energetic eddy activity along the GS. Detection results are then analyzed to
investigate the kinematic properties and temporal variability of GS mesoscale eddies. The
studied kinematic properties include the eddy size, duration, intensity, propagation, and
spatial distribution. On average, cyclonic eddies are smaller in size but more energetic and
remain coherent longer than anticyclonic ones. Cyclonic eddies generally travel further
from the generation sites and have a strong tendency for westward propagation with a small
equatorward deflection. Anticyclonic eddies remain near their generation locations and tend
to propagate northward. The temporal evolution of eddy properties for long-lived eddies
(lifetime >90 days) is also examined. For both cyclonic and anticyclonic eddies, the size
increases rapidly to their maximum value within the first 20 days at which point they begin
to slowly decay. In terms of intensity, cyclonic eddies show a quasi-linear decay while the
anticyclonic ones reach a quasi-steady state after 3–4 months of a more rapid decay.
Finally, the seasonal variability of the GS mesoscale eddies is explored. In autumn and
winter, both types of eddies are more numerous and larger but less intense, while in spring
they are more intense but less numerous and generally smaller. Several possible
mechanisms, including the wind stress, thermal forcing, and topographic influence, are
considered to explain the seasonal cycle of eddy variability.

Citation: Kang, D., and E. N. Curchitser (2013), Gulf Stream eddy characteristics in a high-resolution ocean model, J. Geophys. Res.
Oceans, 118, 4474–4487, doi:10.1002/jgrc.20318.
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A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking

EVAN MASON AND ANANDA PASCUAL

Instituto Mediterr�aneo de Estudios Avanzados, Consejo Superior de Investigaciones Cientı́ficas, University of the

Balearic Islands, Esporles, Illes Balears, Spain
JAMES C. MCWILLIAMS

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

(Manuscript received 24 January 2014, in final form 7 February 2014)

ABSTRACT

This paper presents a software tool that enables the identification and automated tracking of oceanic eddies

observed with satellite altimetry in user-specified regions throughout the global ocean. As input, the code

requires sequential maps of sea level anomalies such as those provided by Archiving, Validation, and In-

terpretation of Satellite Oceanographic (AVISO) data. Outputs take the form of (i) data files containing eddy

properties, including position, radius, amplitude, and azimuthal (geostrophic) speed; and (ii) sequential image

maps showing sea surface heightmaps with active eddy centers and tracks overlaid. The results given are from

a demonstration in the Canary Basin region of the northeast Atlantic and are comparable with a published

global eddy track database. Some discrepancies between the two datasets include eddy radius magnitude, and

the distributions of eddy births and deaths. The discrepancies may be related to differences in the eddy

identification methods, and also possibly to differences in the smoothing of the sea surface height maps. The

code is written in Python and is made freely available under a GNU license (http://www.imedea.uib.es/users/

emason/py-eddy-tracker/).
1. IntroductionSatellite altimetry has revealed the ubiquity of me-

soscale eddies in the global ocean (e.g., Stammer 1997,

1998). Eddies range greatly in shape and size, are often

asymmetric, and can have highly variable translational

and rotational velocities (McWilliams 2008; Chelton

et al. 2011b, hereafter CSS11; Early et al. 2011). Interest

in mesoscale eddies arises from their role in the dy-

namics of the large-scale oceanic circulation; eddies are

efficient carriers of mass and its physical, chemical, and

biological properties, such that their presencemodulates

fluxes of heat and momentum and the dynamics of ma-

rine ecosystems (Chelton et al. 2011a; Gruber et al. 2011;

Stramma et al. 2013).
Recent years have seen the emergence of several au-

omated oceanic eddy tracking algorithms that contribute

knowledge of eddy properties and their variability Th

hniques comprise three mainmethods: ge

Chaigneau et al. 2008; Nencioli et al. 2010; CSS11);

Okubo–Weiss (e.g., Isern-Fontanet et al. 2003; Morrow

et al. 2004; Chelton et al. 2007; Ubelmann and Fu 2011);

and wavelet (e.g., Doglioli et al. 2007; Rubio et al. 2009);

and a comparative analysis of these approaches has been

made by Souza et al. (2011). Novel techniques falling

outside these methods are a hybrid geometric Okubo–

Weiss approach (Halo et al. 2014), and an objective

approach based on geodesic transport theory (Beron-

Vera et al. 2013).Two decades’ worth of merged global sea surface

height (SSH) frommultiple satelliteborne altimeters are

presently available from Archiving, Validation

terpretation of Satellite Oceanogra h

providing improved re
and their variaresp
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Abstract: The sea level anomaly data derived from satellite altimetry are analyzed to 
investigate statistical characteristics of mesoscale eddies in the North Pacific. Eddies are 
detected by a free-threshold eddy identification algorithm. The results show that the 
distributions of size, amplitude, propagation speed, and eddy kinetic energy of eddy follow 
the Rayleigh distribution. The most active regions of eddies are the Kuroshio Extension 

OPE N A C C ESS Okubo-Weiss Method

2D-Wavelet Methods

Winding angle Methods

Doglioli et al. (2007), ...

Weiss (1991), 
Isern-Fontanet et al. (2004)...

Sandarjoen et al. (2000), ...

Geodesic transport theory Beron-Vera et al. (2013), ...

Geometric analysis UV fields Nencioli et al. (2010), ...

Some comparison with in-situ or satellite data 

....

Trani et al. (2011), Chaigneau et al. (2011),Griffa et al. (2008), Shoosmith et al. (2005)...
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Methods for Global Ocean

Our method is a modified geometry based algorithm 

detection of anomaly SSH pattern (horizontal extension)

 detection of rotation inside the eddy at least 5m deep  

filter-out spurious eddy-like patterns that do not show a corresponding vortex
(close to coastline, merging AVISO SSH and OSCAR UV, ...)

This overall census shrinks to a bunch of methods considering the global ocean....

W ¼ ðvx þ uyÞ2 þ ðux � vyÞ2 � ðvx � uyÞ2
strains... relative vorticity

< σ(x, y)

< 0
require a regional cutoff value

Very noisy, tendency of generating false-positive eddies

Okubo-Weiss method 

local balance between deformation and vortical flow

Access to vertical extension of eddies!!!
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Any local extreme of SLA corresponds to a different eddy

onnnnnnnnnnnnnnnnnnnnssss: depending on a parameter d, weak dependencydd
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Tracking algorithm: nearest-neighbor method

Geometry-based method on SLA

max eddy speed : 25 cm/s
box of 150 km radius for weekly maps

Eddy at time k+1 are tracked to

 -- closest eddy at k
 -- best area ratio at time k if

A further tracking between k and k+2 is implemented 
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10-year statistics on Global Ocean



10 years statistics on Global ocean basin
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10 years statistics on Global ocean basin

C-GLORS reanalysis AVISO/OSCAR datasetsNEMO run

Fraction of eddy occurrence in 10 yrs for eddies with lifetime longer than 16 weeks

decay ratenumber of eddies per record
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NEMO run C-GLORS reanalysis AVISO/OSCAR datasets

Mean amplitude for eddies with lifetime longer than 16 weeks

10 years statistics on Global basin
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Trajectories of eddies with lifetime longer than 16 weeks Vs depth

10 50 200 400 600 1000

Mean Depth [m]

26961 westward 11513 eastward13925 westward 6436 eastward

10 years statistics on Global basin

NEMO run C-GLORS reanalysis
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AVISO/OSCAR datasets

Fraction of total EKE, transported by eddies with lifetime longer 
than 16 weeks

EKEeddy

EKEtot

13/15

NEMO run C-GLORS reanalysis

Surface

3D EKEeddy

EKEtot
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AVISO/OSCAR datasets

EKEeddy

EKEtot
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C-GLORS reanalysis

3D EKEeddy

EKEtot
integrate over the full water

 column

vertical integration stops 
when eddy vanish

NEMO run

Surface

0 10 30 5020 40 600 10 30 5020 40 60

% EKE % EKE

Fraction of total EKE, transported by eddies with lifetime longer 
than 4 weeks



Assimilation seems to

Summary

Eddies populate any corners of ocean basin, being responsible for diverse 
phenomenologies

Eddy census gather three different datasets to highlight the impact of assimilation:

1) NEMO free simulation at 1/4

2) C-GLORS reanalysis at 1/4
3) observed datasets (AVISO/OSCAR) at 1/4

recover most of the mesoscale variability from satellite/in-situ 
data and consistently generate variability in the interior

correct the behavior of each single eddy towards a more 
realistic profiles

@ global level

@ local level

Can we give some “trustful” estimates of heat and freshwater 
fluxes at global level ??

NEXT
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How it performs over an 1/16° eddying simulation of the global sea 
ice-ocean system ??

Iovino, AC et al., GMDD  2016

Stepanov, AC et al., JGR:Ocean 2016

Stepanov, AC et al., JGR:Ocean 2016

NEXT

16/15

Summary



Thank you!



Backup slides



(Chelton et al. 2011)

AVISO 1/3 AVISO 1/4 and OSCAR datasets

maps averaged over boxes 1° x 1°



Regional case study: 
Peru-Chile current system



cyclonic eddies transport cold water  
offshore, trapping recently upwelled 
water

anti-cyclonic eddies generated 
from front instabilities of warm 
poleward currents

warm, salty sub-surface subtropical water 
from 9° S in fall (austral spring)

near-costal cold 
upwelling region

Peru-Chile currents

The role of eddies on Peru-Chile current system

acquire a water mass structure 
typical of their formation region 
and propagate offshore

In this new environment, eddies 
appear as anomalous water
masses with temperature and 
salinity anomalies

7/15
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Regional case study

Salinity anomaly trapped in the eddies 

420 Cycl 526 Anti-Cycl

C-Glors

No assim

Reanalysis corrects mean 
amount as well as profile in 
fall season. Anomaly eval. vs 
climatological mean from 
10ys run
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Anomaly eval. vs climatological mean 
from CSIRO Atlas of Regional Seas
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(Chaigneau et al. 2011)

Regional case study

C-GLORS
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