

Gyrotactic phytoplankton in turbulent flows

Massimo Cencini

Istituto dei Sistemi Complessi ISC-CNR Roma

massimo.cencini@cnr.it

NLOA: Nonlinear processes in oceanic and atmospheric flows, Madrid July 6-8 2016

General motivation

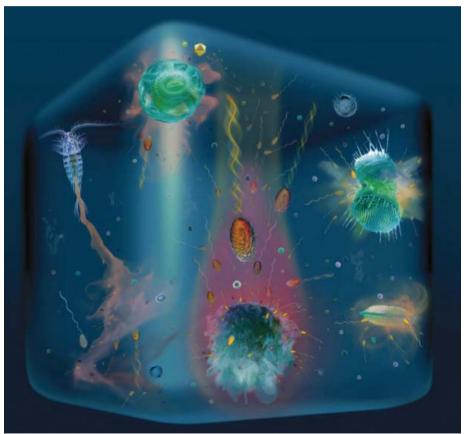
Marine microorganisms live in turbulent environments which mediate key processes including nutrient uptake, reproduction and predation.

Turbulence generates heterogeneous distribution of nutrients at very small scales and influences the encounter rates which are important to reproduction and predation.

What is the evolutionary response of microbes, how they adapt to the turbulent environment?

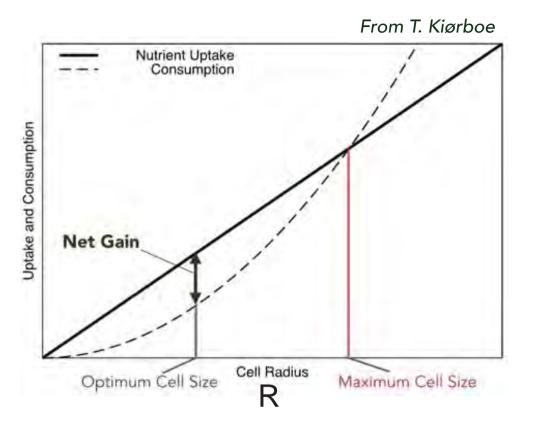
In spite of their name many planktonic microorganisms are able to swim (e.g. bacteria, dinoflagellates microalgae, most of zooplankton) typically with some taxis (chemo,photo,gyro).

What are the advantages of motility?



(courtesy of R. Stocker)

Swimming and Feeding in turbulence



 $Q_D \propto R$ diffusive uptake $M \propto R^{\alpha}$ metabolic rate (α >1)

Beyond the optimal cell size (a few µm) turbulence and/or motility can help

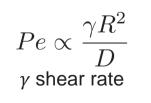
Sherwood number measures effective uptake over diffusive uptake Swimming increases uptake

$$Sh \equiv \frac{Q}{Q_D} = \frac{1}{2} [1 + (1 + 2Pe)^{1/3}]$$
$$Pe = VR/D$$

Turbulence increases uptake

$Sn = 1 + 0.29Pe^{\gamma}$ $Ie \ll 1$	Sh =	$1 + 0.29 Pe^{1/2}$	$Pe \ll 1$
---------------------------------------	------	---------------------	------------

 $Sh = 0.55 P e^{1/3} \qquad P e \gg 1$



more effective for larger cells

T. Kiorboe (2008) L. Karp-Boss *et al (1996)*

Key issue

In labs microorganisms are typically studied in still fluids, in natural habitats, they move by swimming & fluid transport

understanding such an interplay is key to marine ecology, global bio-chemical cycles, and applications (e.g. food industry, biofuel production, etc.)



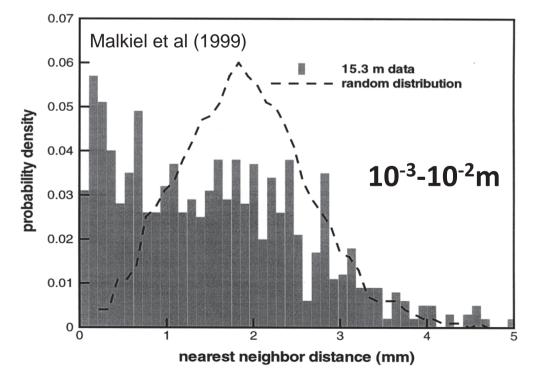
Phytoplankton patchiness over many scales

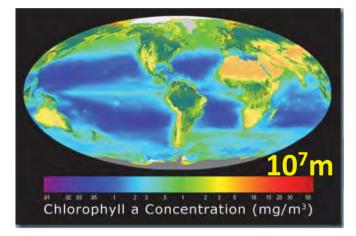
Goals: Rationalizing some aspects of phytoplankton patchiness in terms of the interplay between motility and fluid motion within the framework of dynamical systems and fluid mechanics

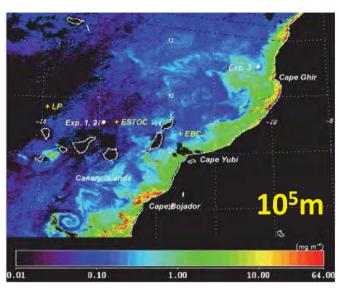
micro-patchiness correlates with motility

dinoflagellates (motile) more patchy than diatoms (non-motile) in situ techniques:

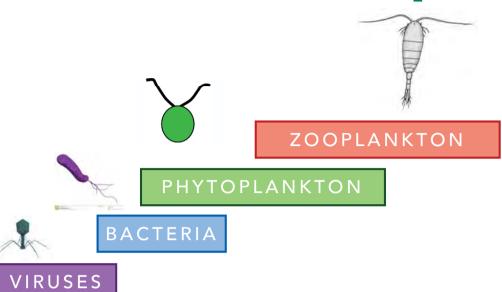
- 3D holography Malkiel et al (1999)
- Syringe arrays Moursiten et al. (2003)
- video-microscopy Gallagher et al (2004)

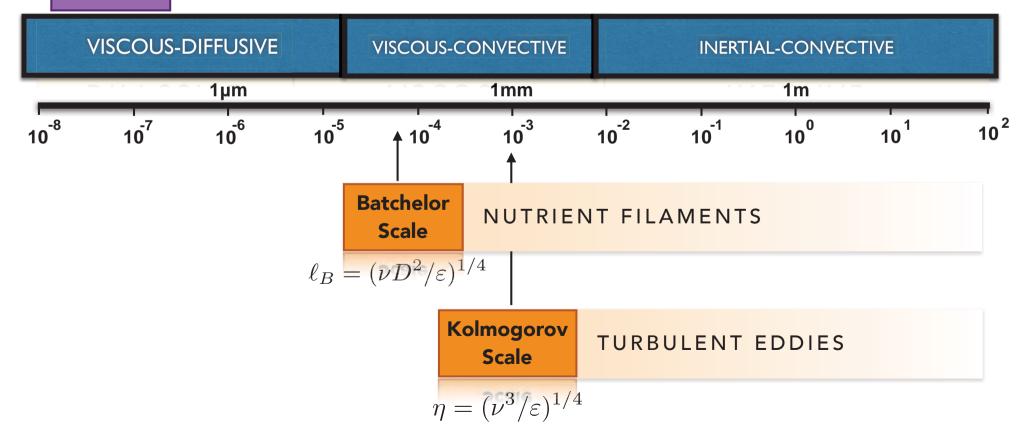






Scales of aquatic microbes





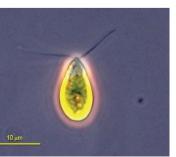
Case study: Gyrotactic Phytoplankton

gyrotactic microalgae

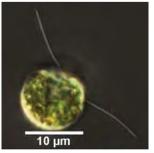
 large diversity of forms
 primary producers in oceans
 ~50% photosynthetic activity on Earth
 up to 10⁴ per milliliter of water
 at the bottom of marine food web
 can form Harmful (toxic) Algal Bloom
 patchiness at different scales
 many species are able to swim, e.g. 90% toxic algae are able to swim

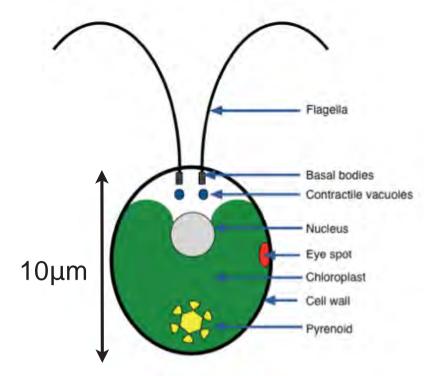
Heterosigma akashiwo

Dunaliella tertiolecta



Chlamydomonas reinhardtii





both sexual and asexual reproduction

eyespot: for positive/negative phototaxis at low/high intensity

good swimmers $v_s \sim 100 \mu m/s$ (10 body lengths/sec)

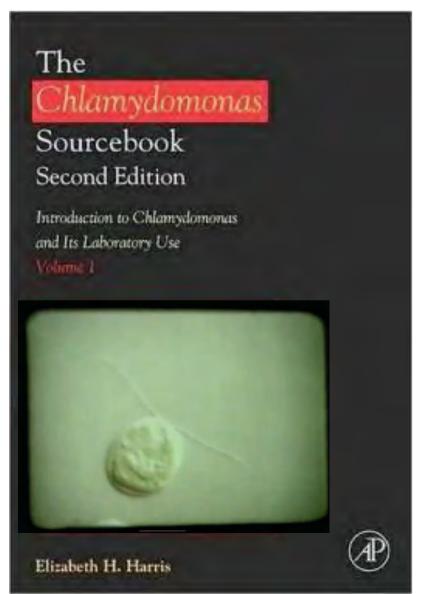
slightly heavier than water ~ neutrally buoyant sedimentation speed ~3 μ m/s << v_s

swimming style

bottom heavy center of mass below center of symmetry (due to chloroplast-mass distribution) naturally swimming upwards against gravity (*negative gravitaxis*)

Chlamydomonas

Unicellular biflagellate model for molecular biology



Model for gyrotaxis

position dynamics → self-propelled tracers

-neutrally buoyant spherical cells -very small d<< η (no inertia Re_d \rightarrow 0) -very dilute (no hydrodynamic effects & "collisions") -swimming at constant speed v_s in the direction **p**

swimming direction dynamics

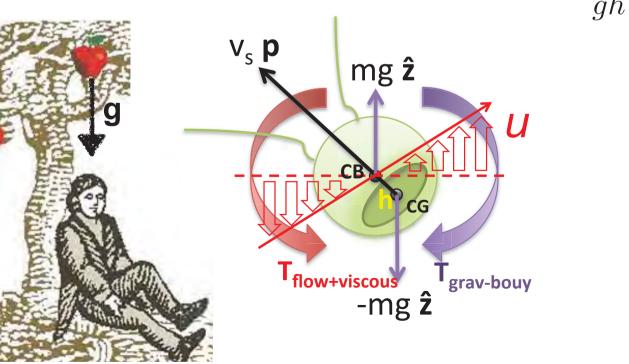
the swimming direction changes due to gravity-buoyancy+ viscous torque and rotation by fluid vorticity

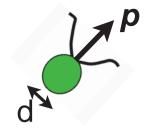
$$\dot{\boldsymbol{p}} = \frac{1}{2B} [\hat{\boldsymbol{z}} - (\hat{\boldsymbol{z}} \cdot \boldsymbol{p})\boldsymbol{p}] + \frac{1}{2}\boldsymbol{\omega} \times \boldsymbol{p}$$
$$B = \frac{3\nu}{ah} \text{ orientation} \text{ time-scale}$$

asphericity typically very small **stochastic effects** due e.g. to waving or asynchrony in flagella movement

here neglected

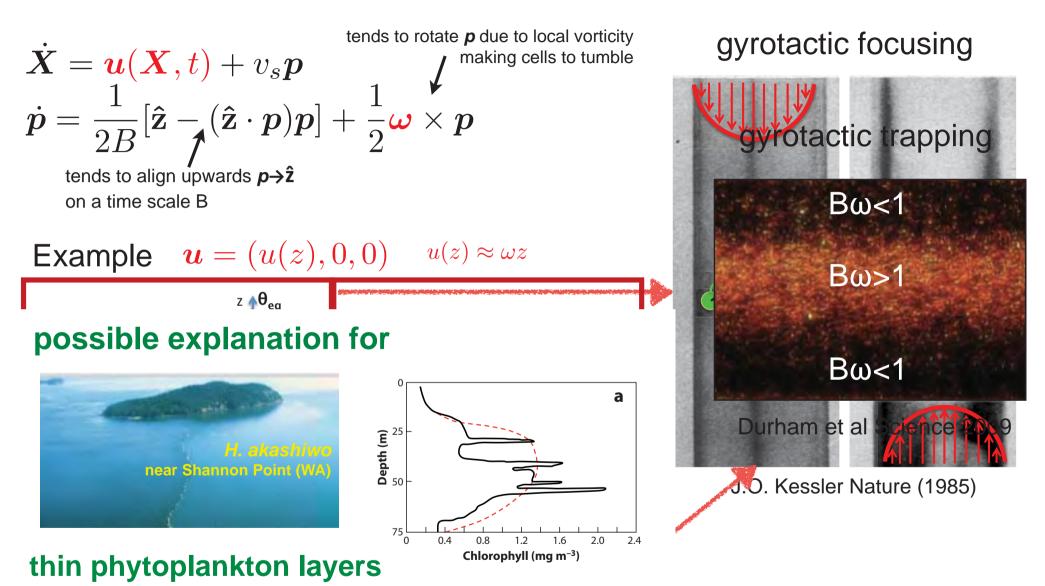
Kessler (1985), Pedley & Kessler (1987),(1992)





 $\dot{X} = u(X, t) + v_s p$

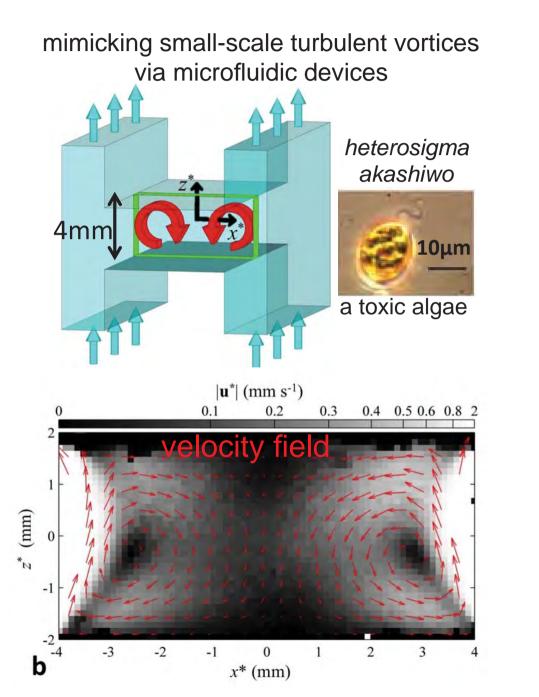
Gyrotaxis in laminar flows



spectacular aggregations of phytoplankton in layers cm-to-m thick

What does happen in more complex flows?

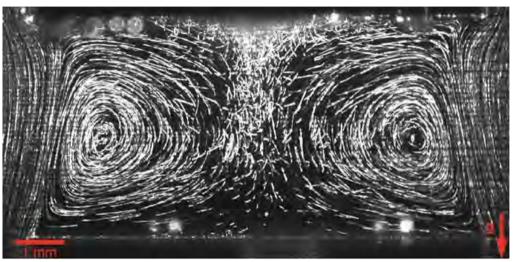
Experiment in a vortical flow



experiment (mm) dead cells *N experiment (mm) alive cells *N -1 _2 simulation 0 COMSOL -1 -3 -2 -1 0 2 3 4 d x^* (mm)

cell's concentration

Experiment in vortical flows

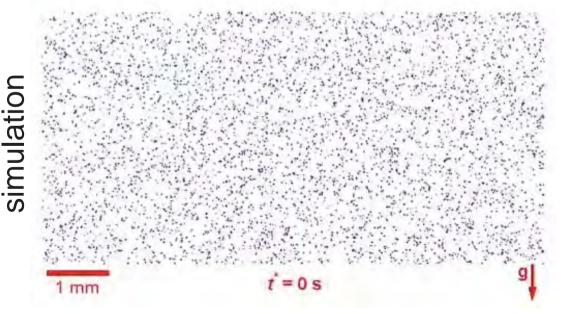


observations:

Cells accumulate in the downwelling region between vortices and slightly in the vortex cores

model validation:

Good agreement between experiment and simulation of model equations with B, v_s measured independently



questions:

What does happen in realistic turbulent flows which are unsteady and characterized by a multitude of flow structures?

Gyrotactic swimmers in turbulence

swimmers dynamics

$$\dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}, t) + v_s \boldsymbol{p}$$
$$\dot{\boldsymbol{p}} = \frac{1}{2B} [\hat{\boldsymbol{z}} - (\hat{\boldsymbol{z}} \cdot \boldsymbol{p})\boldsymbol{p}] + \frac{1}{2} \boldsymbol{\omega}(\boldsymbol{X}, t) \times \boldsymbol{p}$$

typical numbers

 $d \approx 10 \mu m$ size $B \approx 1 - 10s$ orientation time $v_s = 50 - 500 \mu m/s$ swimming velocity

nondimensional cells' parameters

swimming number

$$\Phi = \stackrel{v_s}{-}$$

 $\Psi <<1$ stable cells: directional bias is effective

 u_n

stability number

$$\Psi = B\omega_{\eta} = \frac{B}{\tau_{\eta}}$$

 $\Psi >> 1$ unstable cells: tumbling

$$B\omega_{\eta} = \frac{B}{\tau_n}$$

 $\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \nu \Delta \boldsymbol{u} - \boldsymbol{\nabla} p + \boldsymbol{F}$

fluid dynamics

 $\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$

typical turbulent scales

 $\eta = (\nu^3/\epsilon)^{1/4}$ length $\tau_{\eta} = (\nu/\epsilon)^{1/2}$ time $u_{\eta} = (\epsilon \nu)^{1/4}$ velocity $\omega_\eta = 1/\tau_\eta$ vorticity

control parameter

$$Re_{\lambda} = \frac{u_{rms}\lambda}{\nu} \approx \sqrt{Re}$$

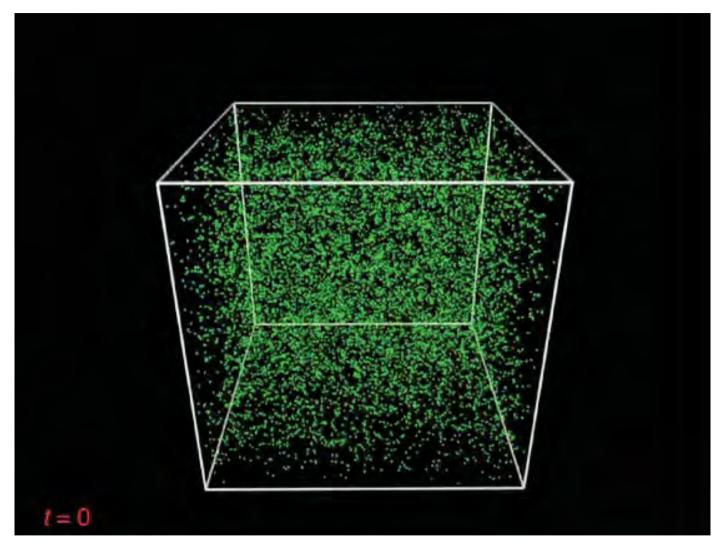
typical values in oceans

ε (m²/ s³)	τ _η (s)	η (mm)	u _η (μm/s)
I 0 ⁻⁸	10	3,16	316
I 0 ⁻⁶	I	I	1.000

Gallager et al Mar. Ecol. Prog. Ser (2004)

in natural conditions values $\Psi, \Phi \sim O(1)$ are easily achieved

Gyrotactic phytoplankton in turbulence



Why cells cluster? Where do they cluster? How clustering depends on parameters?

Why? Dissipative dynamics

$$\dot{oldsymbol{X}} = oldsymbol{v} = oldsymbol{u} + \Phi oldsymbol{p}$$

 $\dot{oldsymbol{p}} = rac{1}{2\Psi} [oldsymbol{\hat{z}} - (oldsymbol{\hat{z}} \cdot oldsymbol{p}) oldsymbol{p}] + rac{1}{2} oldsymbol{\omega} imes oldsymbol{p}$

 $\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \nu \Delta \boldsymbol{u} - \boldsymbol{\nabla} p + \boldsymbol{F}$ $\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$

u "stochastic" & smooth at small scales r<n

smooth dissipative dynamical system in phase space (**X**,**p**) of dimension 2d-1 with phase-space volume contraction rate

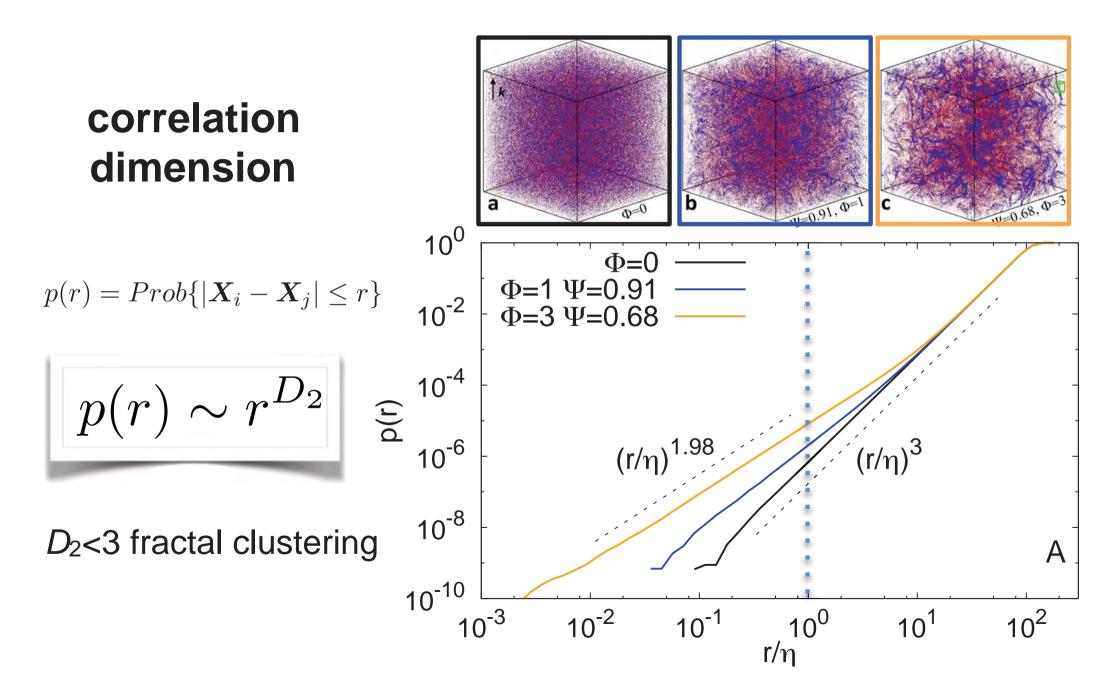
$$\Gamma \tau_{\eta} = \tau_{\eta} \sum_{i=1}^{d} \frac{\partial \dot{X}_{i}}{\partial X_{i}} + \frac{\partial \dot{p}_{i}}{\partial p_{i}} = -\frac{d-1}{2\Psi} p_{z}$$

from general considerations on dissipative dynamical systems

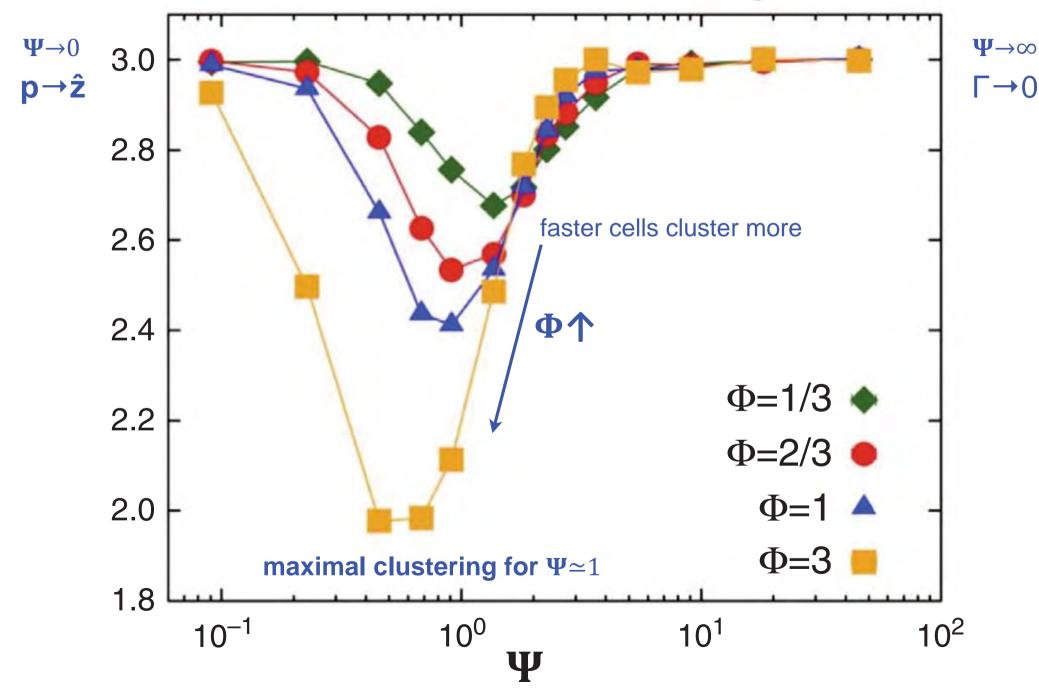
(multi-)fractal dynamical attractor with D₂ < 2d-1

if D_2 <d clustering is observed in position space

Fractal clustering



Fractal clustering



Limit of stable cells $\Psi << 1$

$$\begin{aligned} \dot{\mathbf{X}} &= \mathbf{v} = \mathbf{u} + \Phi \mathbf{p} \\ \dot{\mathbf{p}} &= \frac{1}{2\Psi} [\mathbf{\hat{z}} - (\mathbf{\hat{z}} \cdot \mathbf{p})\mathbf{p}] + \frac{1}{2}\boldsymbol{\omega} \times \mathbf{p} \end{aligned} \qquad \begin{aligned} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} &= \nu \Delta \mathbf{u} - \nabla \mathbf{p} + \mathbf{F} \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$$

if $\Psi{<}{<}1$ assuming equilibrium $~\dot{\mathbf{p}}\approx 0$

to leading order $\mathbf{p}_{q} \approx (\mathbf{k})$

$$\mathbf{p}_{q} \approx (\Psi \omega_{v}, -\Psi \omega_{x}, 1)$$

cell velocity field

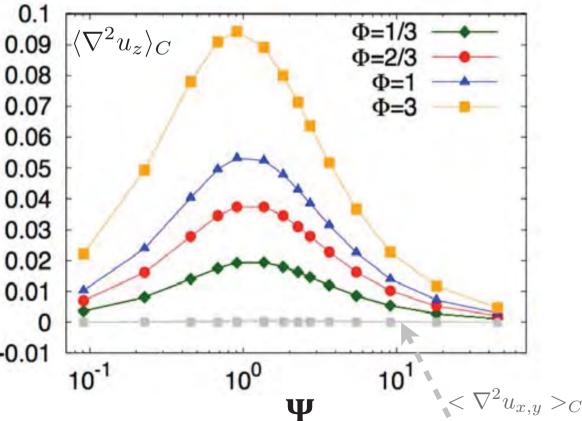
$$oldsymbol{v} = oldsymbol{u} + \Phi p_{\!\scriptscriptstyle{\mathsf{eq}}}$$

is compressible

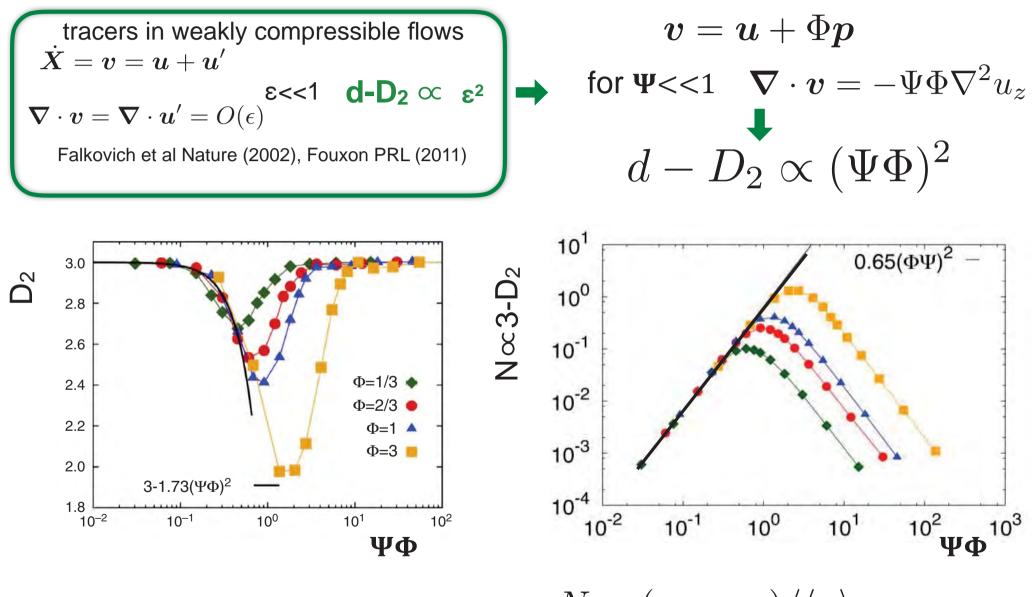
$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = -\Psi \Phi \nabla^2 u_z$$

accumulation in compressing regions

$${oldsymbol
abla} \cdot {oldsymbol v} < 0 \Longrightarrow
abla^2 u_z > 0$$
 -0.0

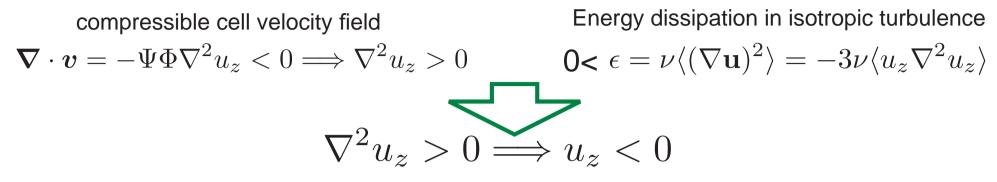


Prediction on fractal dimension

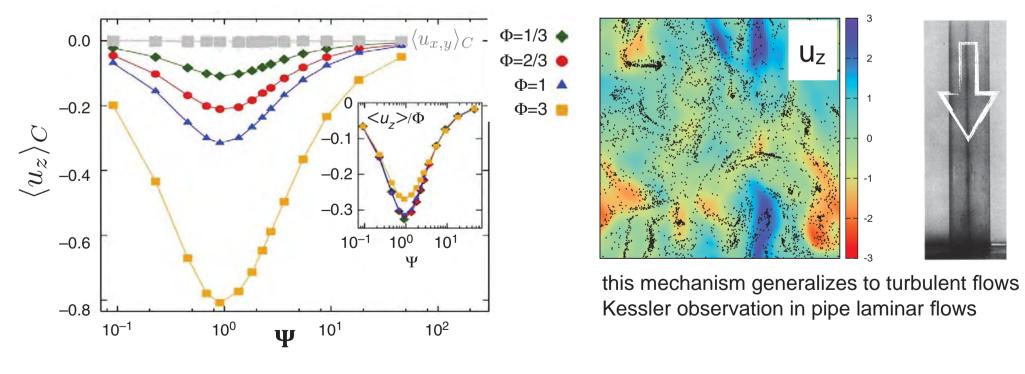


n- number of particles in a box of size $\Lambda \approx O(\eta)$ $N = (\sigma - \sigma_P)/\langle n \rangle \propto 3-D_2$ $\sigma^2 = \langle n^2 \rangle - \langle n \rangle^2$ $\sigma_P^2 = \langle n \rangle$ Dubrulle and Lachiéze-Rey A&A (1994)

Where do cells go?

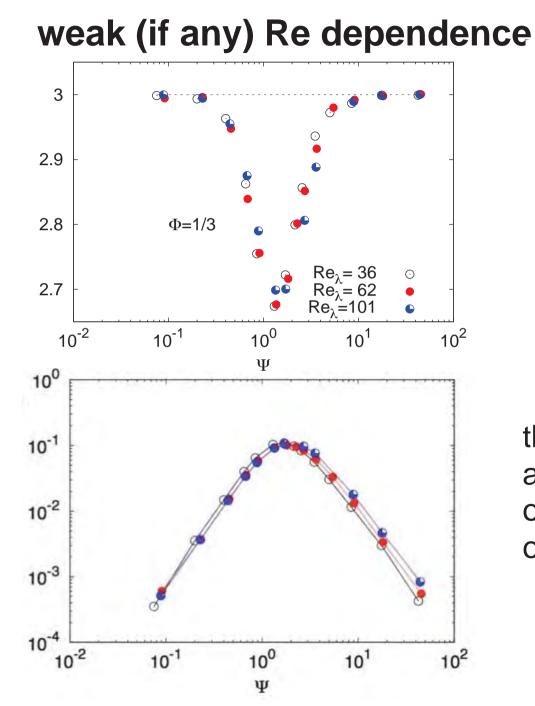


preferential accumulation in downwelling flow regions

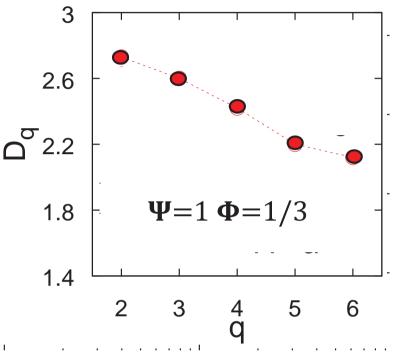


The mechanism of preferential accumulation may be more general (Gustavsson et al PRL (2016))

Reynolds dependence & multifractality



multifractal distribution



the generalized dimensions display a non-trivial dependence on the order q demonstrating the presence of multifractality as expected

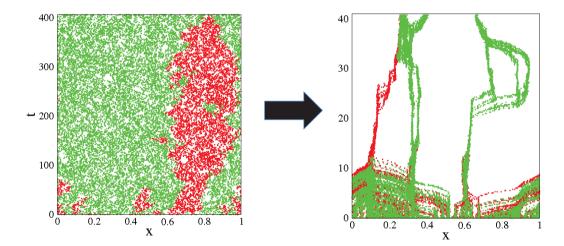
Why small scale clustering may be important?

Predations



Reproduction

Population dynamics in compressible flows



Benzi, Jensen, Pigolotti, Nelson (2012)

Model refinement

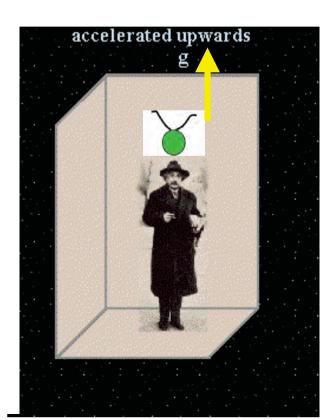
Bottom heaviness makes the cell an accelerometer so cell acceleration due to the fluid should also matter summing up to gravitational acceleration

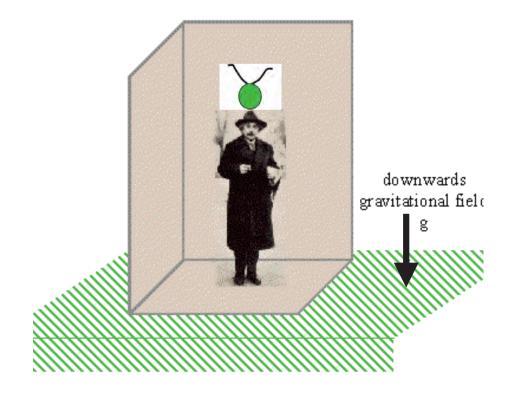
$$V_0 = \frac{3\nu}{h}$$
 re-orientation speed spherical cells
$$B = \frac{V_0}{g}$$
 re-orientation time

$$\dot{\boldsymbol{p}} = -\frac{1}{2V_O} [\boldsymbol{A} - (\boldsymbol{A} \cdot \boldsymbol{p})\boldsymbol{p}] + \frac{1}{2}\boldsymbol{\omega} \times \boldsymbol{p}$$

p o h c mg mA

a fluid acc. at cell position**A=g-a** total acc. felt by the cell

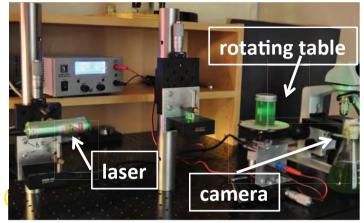




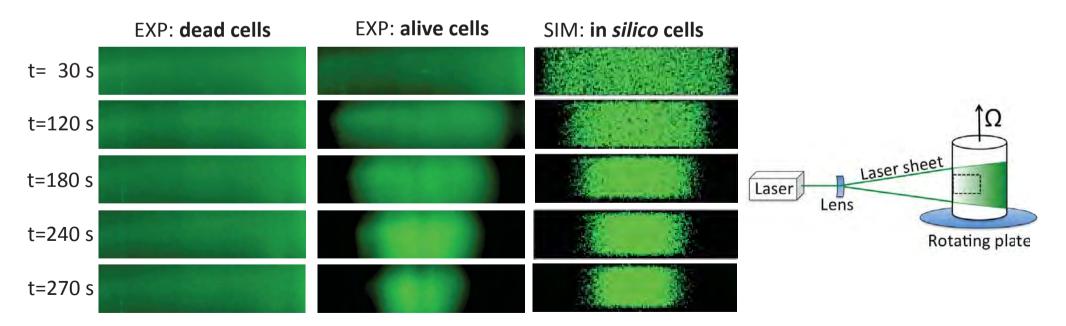
model with gravitational bias only \rightarrow NO FOCUSING refined model with fluid acceleration \rightarrow FOCUSING

due to fluid acc swimming direction is centripetal

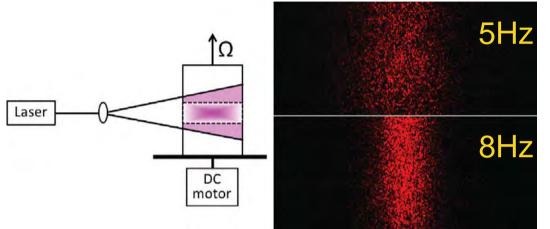
rotational diffusion stabilizes cells' distribution in its absence model predicts cells' collapse on rotation axis



laboratory setup



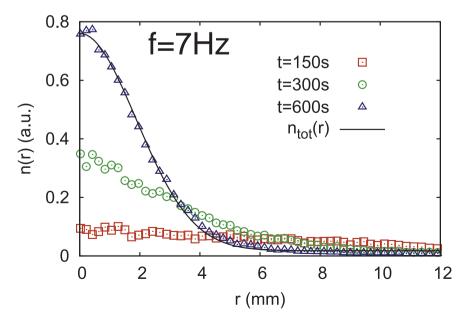
the "standard" model without fluid acceleration would not reproduce the experiment



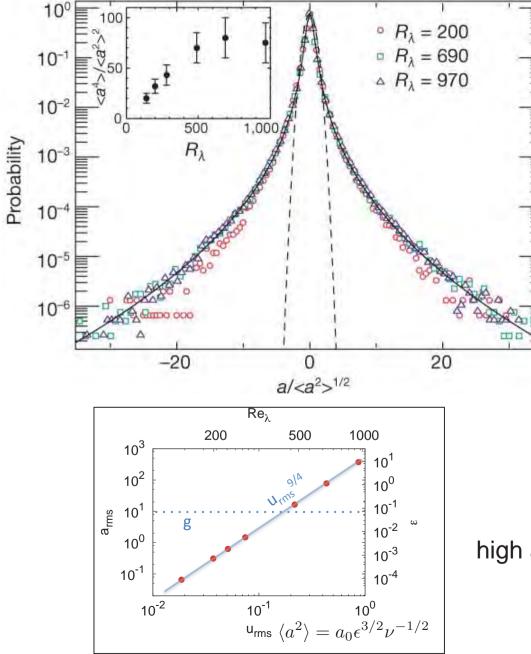
Input: laser 655nm (blue) output: cell fluorescence 450nm (red)

Chlamydomonas augustae low concentration 1-5 10⁴cells/ml

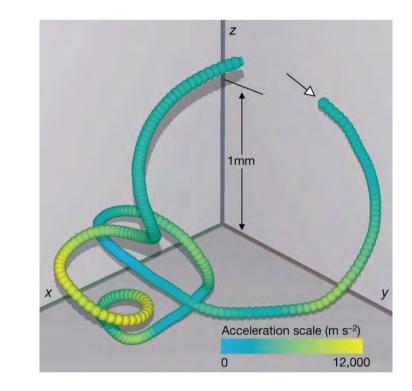
Radial distribution **n(r,t)** as a function of time



Why acceleration may be important?



from Voth et al, JFM (2002)



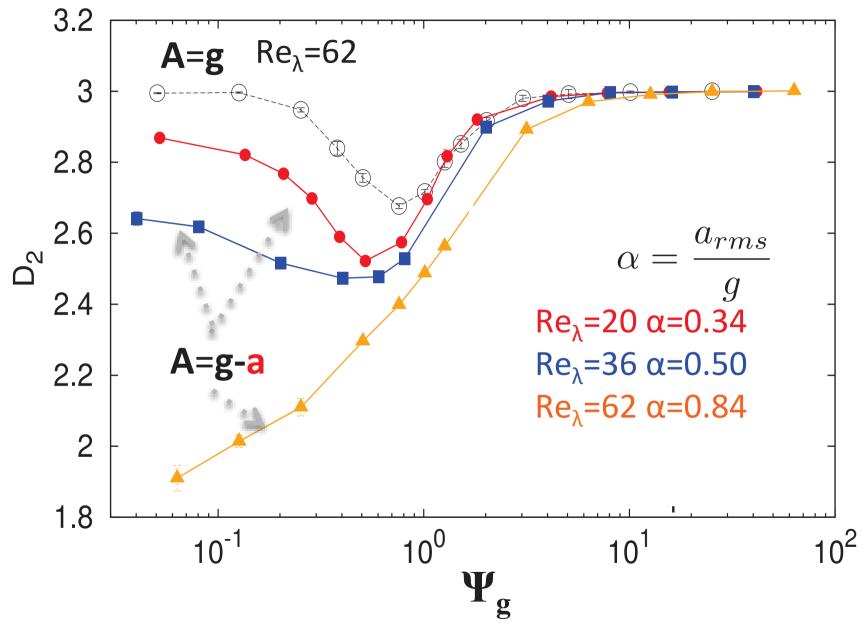
La Porta et al Nature (2001)

fluid acceleration is important at high Re even when a_{rms}<g locally a(**x**,t)>g

high acceleration associated to small scale vortices

previous results hold when g >> a_{rms} what does happen when a_{rms} >> g?

Effect of turbulent acceleration



turbulent acceleration enhances small scale clustering

Clustering in high vorticity regions

g=0
$$\dot{\mathbf{X}} = \mathbf{v} = \mathbf{u} + \Phi \mathbf{p}$$

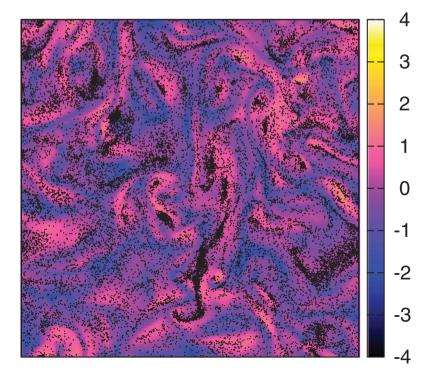
 $\dot{\mathbf{p}} = \frac{1}{2\Psi_a} [\mathbf{a} - (\mathbf{a} \cdot \mathbf{p})\mathbf{p}] + \frac{1}{2}\boldsymbol{\omega} \times \mathbf{p}$
 $\mathbf{a} = \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{F}$
 $\nabla \cdot \mathbf{u} = 0$

$$\Psi_a = \frac{v_O \omega_{rms}}{a_{rms}} \qquad \text{if } \Psi_a \to 0 \text{ to lead}$$

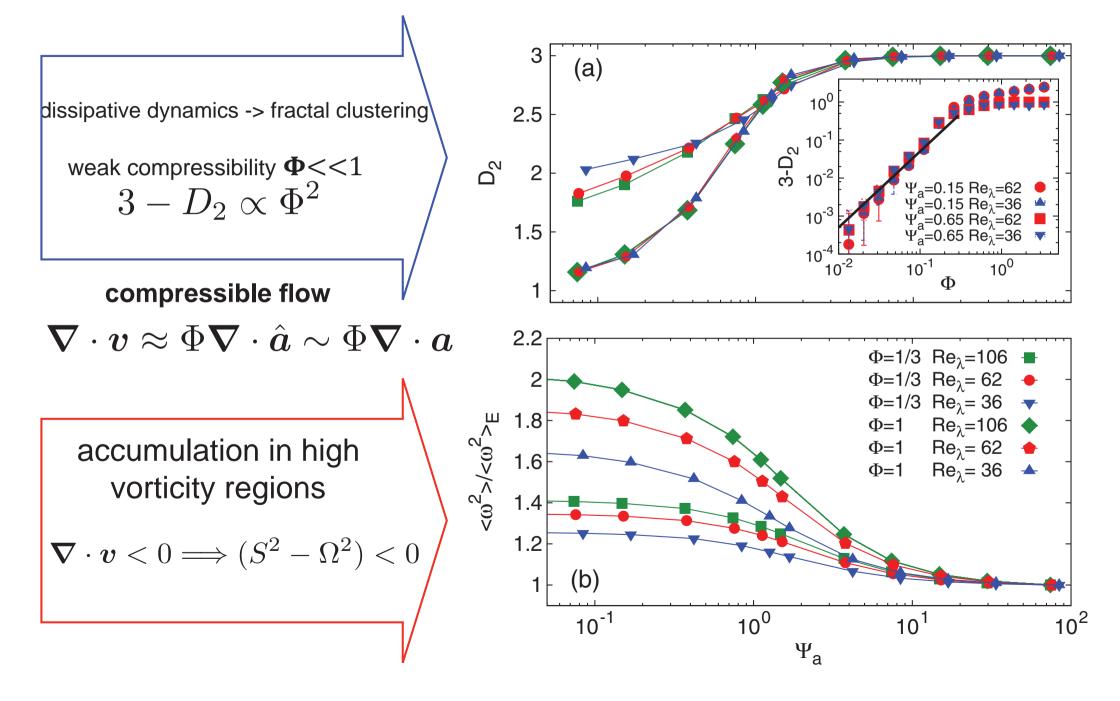
$$egin{array}{ll} \Psi_a
ightarrow 0 ext{ to leading order } {f p}
ightarrow \hat{m a} \ m v = m u + \Phi \hat{m a} \end{array}$$

compressible effective flow

$$\boldsymbol{\nabla}\cdot\boldsymbol{v}\approx\Phi\boldsymbol{\nabla}\cdot\hat{\boldsymbol{a}}\sim\Phi\boldsymbol{\nabla}\cdot\boldsymbol{a}=\Phi(S^2-\Omega^2)<0$$

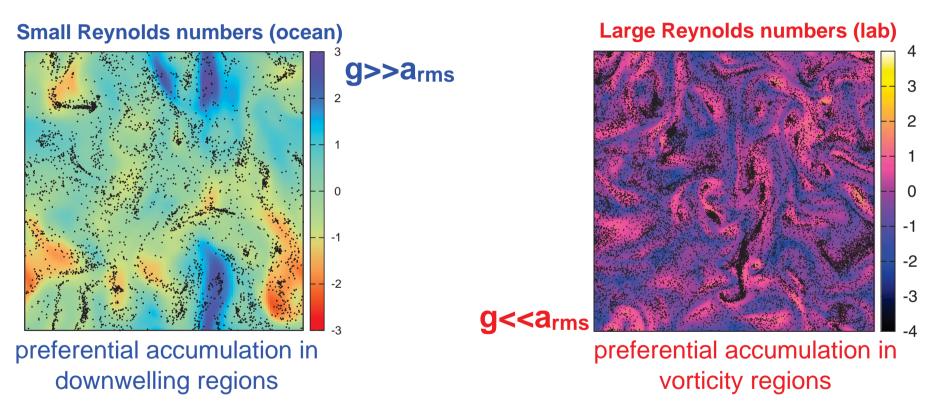


Effects of fluid acceleration



Summary

Combination of swimming and turbulence generates small-scale (fractal) patchiness in gyrotactic phytoplankton distribution: ⇐ dissipative dynamics



clustering is stronger for faster swimmers fluid acceleration increases clustering

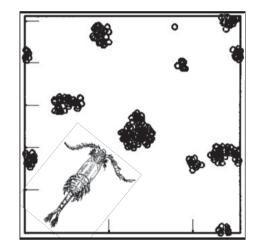
Durham, Climent, Barry, De Lillo, Boffetta, MC, Stocker Nat Comm (2013) De Lillo, MC, Durham, Barry, Stocker, Climent, Boffetta PRL (2014) Santamaria, De Lillo, MC, Boffetta Phys. Fluids (2014) MC, Santamaria, Franchino, Boffetta JTB (2016)

Perspectives

Predations

understanding how model of predators (zooplankton) perform in fractal

patches of preys (gyrotactic cells)



Nutrient uptake

understanding the interplay of swimming, turbulence and clustering in setting the rate of nutrient uptake per cell

Acknowledgments

ALMA UNIVERSITAS TAURINENSIS **Guido Boffetta** Filippo de Lillo Francesco Santamaria **Marta Franchino**

> **Roman Stocker Michael Barry**

William M. Durham

Eric Climent

Thanks

extra slides

$$\begin{split} \dot{\boldsymbol{x}} &= \boldsymbol{u} + v_s \boldsymbol{p} \\ \dot{\boldsymbol{p}} &= -\frac{1}{2V_O} [\boldsymbol{A} - (\boldsymbol{A} \cdot \boldsymbol{p}) \boldsymbol{p}] + \frac{1}{2} \boldsymbol{\omega} \times \boldsymbol{p} + \overbrace{\boldsymbol{\Gamma}_r}^{\text{Rotational diffusion to mimic}} \end{split}$$

$$u = (-\Omega y, \Omega x, 0)$$

$$\omega = (0, 0, 2\Omega)$$

$$a = (-\Omega^2 x, -\Omega^2 y, 0)$$

$$A = (\Omega^2 x, \Omega^2 y, -g)$$

with $\Gamma_r=0$ it is easy to solve in cylindrical coordinates $\mathbf{r}=(x,y)$, z

orientation is the fast process equilibrium swimming direction

$$\dot{\boldsymbol{p}} = 0$$
 $\mathbf{p}^{eq} = \frac{\boldsymbol{a} - \boldsymbol{g}}{|(\boldsymbol{a} - \boldsymbol{g})|} = \left(\frac{-\gamma \boldsymbol{r}}{\sqrt{1 + (\gamma r)^2}}, \frac{1}{\sqrt{1 + (\gamma r)^2}}\right)$ $\gamma = \frac{\Omega^2}{g}$

$$\dot{r} = -\gamma v_{s} \frac{r}{\sqrt{1 + (\gamma r)^{2}}} \qquad \qquad \frac{r}{r_{0}} \frac{1 + \sqrt{1 + (\gamma r_{0})^{2}}}{1 + \sqrt{1 + (\gamma r)^{2}}} e^{\sqrt{1 + (\gamma r)^{2}} - \sqrt{1 + (\gamma r_{0})^{2}}} = e^{-\gamma v_{s} t}$$

$$\gamma r \ll 1 \qquad r(t) = r(0)e^{-\gamma v_{s} t} \quad \text{(ok asymptotically)}$$

BUT our experiments is macroscopic R=2cm times order minutes so random effects in swimming direction cannot be neglected

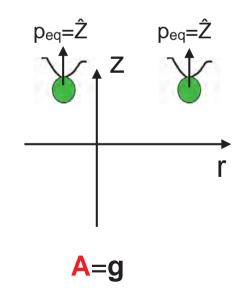
Dr≈ 1/15 s⁻¹

Sketch of the idea $P({m x},{m p},t)$ probability to find a cell in ${m x}$ with orientation ${m p}$

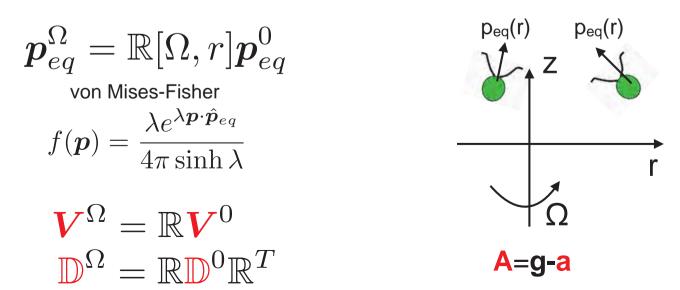
$$P + \nabla_{\boldsymbol{x}}(\dot{\boldsymbol{x}}P) + \nabla_{\boldsymbol{p}}(\dot{\boldsymbol{p}}P - D_{r}\nabla_{\boldsymbol{p}}P) = 0$$

$$\partial_{\boldsymbol{t}}n + \nabla_{\boldsymbol{x}}(\boldsymbol{V}n) - \mathbb{D}\nabla_{\boldsymbol{x}}n) = 0 \quad n(\boldsymbol{x},t) = \int d\boldsymbol{p}P(\boldsymbol{x},\boldsymbol{p},t)$$

This has been solved when **A**=**g** by *R. Bearon, M. Bees & O. Croze (2012)* assuming orientation is the fast process and using Generalised Taylor dispersion theory (*I. Frankel H Brenner (1989)*)



 ∂_t



$$\partial_t n + \nabla_{\boldsymbol{x}}(\boldsymbol{V}n) - \mathbb{D}\nabla_{\boldsymbol{x}}n) = 0$$

solving at stationarity in the radial direction in the limit γ r<<1 we have a Gaussian approximation

$$n(r) \propto e^{-G(r)}$$
 $G(r) = \frac{1}{2} \frac{\gamma r^2}{v_s BF_3^2(\lambda)}$

F₃ can be expressed as a series (Bearon, Bees Croze 2012)

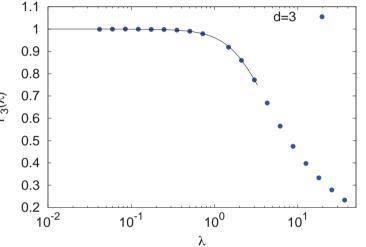
Now the strategy is to fix the parameters from the measurement of stationary distribution and from literature

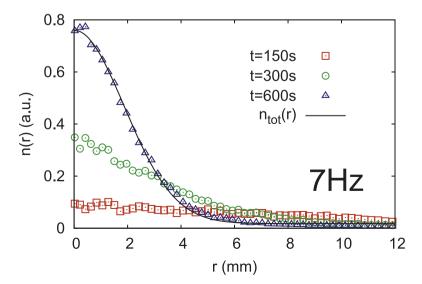
$$v_s = 100 \mu m/s$$
 B=7.5s (fitted)
 $D_r = 0.067 \, rad/s$

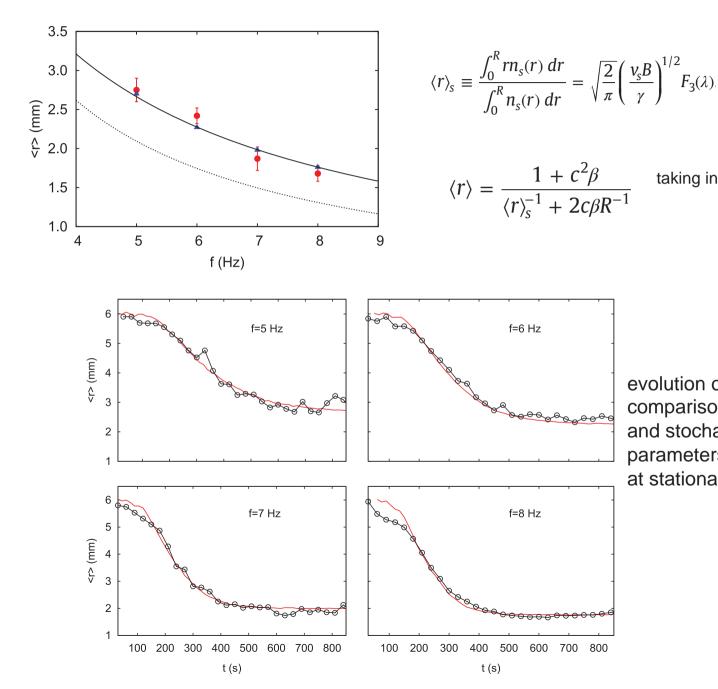
Then we have to take into account the presence of some background we can interpret as non-swimming cells

$$n_t(r,t) = n(r,t) + b$$

$$V_r(r)n - \mathbb{D}_{rr}(r)dn/dr = 0$$







 $\langle r \rangle = \frac{1 + c^2 \beta}{\langle r \rangle_c^{-1} + 2c\beta R^{-1}}$ taking into account correction due to background (c relates to geometry)

 $\beta = N_b / N_s$

evolution of the average radial distance comparison between experiments (symbols) and stochastic simulations (red) with parameters fixed by measurements done at stationarity