Variational Destriping on Remote Sensing Imagery

Ranil Basnayake, Erik Bollt and Jie Sun

Department of Mathematics Clarkson UNIVERSITY

Nicholas Tufillaro Oregon State University

Nonlinear Processes in Oceanic and Atmospheric flows 2016 07/07/2016

Suomi National Polar-orbiting Partnership (Suomi NPP)

Visible Infrared Imaging Radiometer Suite (VIIRS)

- ➤ A scanning radiometer
- Features daily multi-band imaging
- Collects visible and infrared imagery
- ➤ Generate 22 spectral bands
- ➤ Collects global observations of Earth's clouds,

atmosphere, oceans and land surfaces

- Produces higher-resolution and more accurate measurements of sea surface temperature
- ≻ Has 16 detectors

The Problem: Stripes

VIIRS Image

HICO (Hyperspectral Imager for the Coastal Ocean) Image

Affects and the Solution

Affects

- > The visual appearance
- Classification applications
- Quantitative applications

Goal

To remove the stripes while preserving the original information of the image

Destriped Image

Striping

Ubiquitous because of multiple causes

- Detector calibration errors
- View angle variances (differences in atmospheric scattering, sensitivity to polarization)
- Component artifacts (e.g. mirrors)

Destriping Methods

On-orbit calibrations: Solar & Lunar Uniform earth images (e.g. deserts)

Scene based: Usually not calibrated against known reference Inverse problems

Minimizing Functionals

- The problem is to find u, from Au = b when A and b are given Solve $\arg\min_{u} ||Au - b||_{2}^{2}$ instead of Au = b
- Since this is L²(Ω) space, the problem can be written as arg min J(u), where J(u) = ∫(Au − b)² dΩ
 In the minimization process, the gradient of the functional is computed using Gateaux derivative as

$$\nabla J(u) = \frac{d}{d\tau} J(u + \tau h)|_{\tau=0}$$

• Gradient of the functional

$$\nabla J(u) = 2A^*(Au - b)$$

Define the Destripe Functional

- Stripes are horizontal and need smooth only in vertical direction
- Expects that there is no gradient of the difference in horizontal direction
- \blacktriangleright Let f Striped image
 - *u* Destriped image
 - Ω Image Domain
- > Then the energy functional E(u), is

$$E(u) = \int_{\Omega} \left(\frac{\partial}{\partial x}(u-f)\right)^2 d\Omega + \alpha \int_{\Omega} \left(\frac{\partial u}{\partial y}\right)^2 d\Omega$$

Minimize the functional from a variational approach
First compute the Euler-Lagrange equation

Minimize the Functional

> The corresponding Euler-Lagrange equation is $u_{xx} + \alpha u_{yy} = f_{xx},$

where α is the regularization parameter

> Using the derivative operators, this can be re-written as

$$D_{xx}u + \alpha D_{yy}u = D_{xx}f$$
$$\Rightarrow \left[D_{xx} + \alpha D_{yy}\right]u = D_{xx}f$$

 \succ Solve the linear system to uncover *u*

Note

- ★ Need to construct the derivative operators D_{xx} and D_{yy}
- \star Select the best regularization parameter α

Derivative Operators

Consider a matrix *M* of size 3×5 where we want to compute M_{xx} using a finite difference stencil

$$\frac{\partial^2 m_{ij}}{\partial x^2} = \frac{1}{12h^2} \left[-m_{ij-2} + 16m_{ij-1} - 30m_{ij} + 16m_{ij+1} - m_{ij+1} \right]$$

With reflexive boundary conditions and writing the array in vector form

<i>m</i> ₄	<i>m</i> ₁	<i>m</i> ₁	<i>m</i> ₄	m ₇	<i>m</i> ₁₀	m ₁₃	<i>m</i> ₁₃	<i>m</i> ₁₀
<i>m</i> ₅	<i>m</i> ₂	<i>m</i> ₂	<i>m</i> ₅	<i>m</i> ₈	<i>m</i> ₁₁	<i>m</i> ₁₄	<i>m</i> ₁₄	<i>m</i> ₁₁
m ₆	<i>m</i> ₃	<i>m</i> ₃	m ₆	<i>m</i> ₉	<i>m</i> ₁₂	<i>m</i> ₁₅	<i>m</i> ₁₅	<i>m</i> ₁₂

The boundary points are in red

> Resulting operator is a 15×15 sparse array

Derivative Operators *D*_{*xx*}

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇	m ₈	m ₉	m ₁₀	m ₁₁	m ₁₂	m ₁₃	m ₁₄	<i>m</i> ₁₅	
	-14	0	0	15	0	0	-1	0	0	0	0	0	0	0	0	m ₁
	0	-14	0	0	15	0	0	-1	0	0	0	0	0	0	0	m ₂
	0	0	-14	0	0	15	0	0	-1	0	0	0	0	0	0	m
	15	0	0	-30	0	0	16	0	0	-1	0	0	0	0	0	<i>m</i> ₄
	0	15	0	0	-30	0	0	16	0	0	-1	0	0	0	0	m
	0	0	15	0	0	-30	0	0	16	0	0	-1	0	0	0	m
1	-1	0	0	16	0	0	-30	0	0	16	0	0	-1	0	0	m;
$\frac{1}{12h^2}$ ×	0	-1	0	0	16	0	0	-30	0	0	16	0	0	-1	0	m
	0	0	-1	0	0	16	0	0	-30	0	0	16	0	0	-1	mg
	0	0	0	-1	0	0	16	0	0	-30	0	0	16	0	0	<i>m</i> ₁
	0	0	0	0	-1	0	0	16	0	0	-30	0	0	16	0	<i>m</i> ₁
	0	0	0	0	0	-1	0	0	16	0	0	-30	0	0	16	<i>m</i> ₁
	0	0	0	0	0	0	-1	0	0	15	0	0	-14	0	0	<i>m</i> ₁
	0	0	0	0	0	0	0	-1	0	0	15	0	0	-14	0	<i>m</i> ₁
	0	0	0	0	0	0	0	0	-1	0	0	15	0	0	-14	<i>m</i> ₁

Image covers the area surrounded by -122.09° W to -11.90° E, and 34.2° N to 31.6° S
 Near the Santa Monica region in Southern California

Earth Map

VIIRS Images

- The image was taken on November 6th, 2013
- Image Intensity represents Chlorophyll concentration
- **Green** Land
- Dark Blue Missing data

Clouds and "Bow-tie" effects (Stripes)

Stripes – Due to calibration errors between detectors

Bow-tie Effects

- When the view angle increases, consecutive detectors have overlap pixels
- > Delete the overlap pixels during the transmission ('Bow-tie')

http://www.star.nesdis.noaa.gov/smcd/spb/nsun/snpp/VIIRS/VIIRS_SDR_Users_guide.pdf

Inpaint Images

- Approximate the missing data due to clouds and bow-tie effects as destriping algorithm performs well on smooth images
- > Use a technique called 'inpainting' use in image processing
- ≻ Consider a subsample of an VIIRS image on November 6th, 2013

Inpaint Images

- Determine the mask to be inpainted
- ➤ Use 'im2bw' to extract the mask of the missing data
- ➤ White points missing data
- Black points good observations

the second se	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

Inpaint Images

 \succ Fill the missing data

➤ Use 'roifill' to estimate missing data

Destripe VIIRS Images

Consider an image near the Santa Monica region in Southern California on November 6th, 2013

Subsample the image as shown in pink rectangular domain to visualize the stripes properly

Destripe VIIRS Images

Subsampled image near the Santa Monica region in Southern California on November 6th, 2013

Destripe VIIRS Images

After applying the destriping algorithm with reflexive boundaries and $\alpha = 10^{-4}$ on the subsampled image

NASA destriped VIIRS Images

Destriped image after NASA correction

Destriping on NASA Destriped Image

> Destriped NASA corrected image with $\alpha = 8 \times 10^{-5}$

Destripe VIIRS Images with Alpha = 1

> After applying the destriping algorithm with reflexive boundaries and $\alpha = 1$ on the subsampled image

Selection of the Regularization Parameter

> Popular methods are:

The discrepancy principle Generalized cross validation method *L*-curve method and *U*-curve method

U-curve method

Consider the minimization problem $J(u) = \arg\min_{u} ||Au - z||_{2}^{2} + \alpha ||Lu||_{2}^{2}$ Let $x(\alpha) = ||Au_{\alpha} - z||_{2}^{2}$ and $y(\alpha) = ||Lu_{\alpha}||_{2}^{2}$

> The best α is the minimizer of $U(\alpha) = \frac{1}{x(\alpha)} + \frac{1}{y(\alpha)}$

Destriping Comparison

Multi Spectral - Destriping

For *n***=**2

- Assume that the intensity patterns of two nearby spectrals are close to each other.
- Sive a weighting factor β to avoid getting same destripe image from both spectral

$$E(u_1, u_2) = \int_{\Omega} \left(\frac{\partial}{\partial x} (u_1 - I_1) \right)^2 d\Omega + \alpha_1 \int_{\Omega} \left(\frac{\partial u_1}{\partial y} \right)^2 d\Omega + \beta \int_{\Omega} (u_1 - u_2)^2 d\Omega + \int_{\Omega} \left(\frac{\partial}{\partial x} (u_2 - I_2) \right)^2 d\Omega + \alpha_2 \int_{\Omega} \left(\frac{\partial u_2}{\partial y} \right)^2 d\Omega$$

Where, I – the striped spectrum and u – the destriped spectrum

Euler Lagrange equations are

$$\frac{\partial^2 u_1}{\partial x^2} + \alpha \frac{\partial^2 u_1}{\partial y^2} + \beta (u_1 - u_2) = \frac{\partial^2 I_1}{\partial x^2}$$
$$\frac{\partial^2 u_2}{\partial x^2} + \alpha \frac{\partial^2 u_2}{\partial y^2} - \beta (u_1 - u_2) = \frac{\partial^2 I_1}{\partial x^2}$$

For *n*>2 **Multi Spectral - Destriping**

> The generalized energy functional can be obtained as,

$$E(u_1, u_2, \dots, u_n) = \sum_{i=1}^n \left(\int_{\Omega} \left(\frac{\partial}{\partial x} (u_i - I_i) \right)^2 d\Omega \right) + \sum_{i=1}^n \left(\alpha_i \int_{\Omega} \left(\frac{\partial u_i}{\partial y} \right)^2 d\Omega \right) \\ + \beta \sum_{i=1}^{n-1} \int_{\Omega} (u_i - u_{i+1})^2 d\Omega$$

The system of Euler Lagrange equations are

For
$$k = 1$$
, $\frac{\partial^2 u_1}{\partial x^2} + \alpha_1 \frac{\partial^2 u_1}{\partial y^2} + \beta (u_1 - u_2) = \frac{\partial^2 I_1}{\partial x^2}$

For
$$k = n$$
, $\frac{\partial^2 u_n}{\partial x^2} + \alpha_n \frac{\partial^2 u_n}{\partial y^2} - \beta (u_{n-1} - u_n) = \frac{\partial^2 I_n}{\partial x^2}$

For
$$k = 2,3, \dots n-1, \frac{\partial^2 u_k}{\partial x^2} + \alpha_k \frac{\partial^2 u_k}{\partial y^2} + \beta(-u_{k-1} + 2u_k - u_{k+1}) = \frac{\partial^2 I_k}{\partial x^2}$$

Spectral-wise Representation

> Destripe three spectral at once

≻ Wavelengths are 450 nm, 559 nm and 696 nm

Multi Spectral – Destriping on HICO Images

> Combining three spectrals as an RGB image

Striped image

Destriped image

Conclusion and Future Work

- Solution of the destriped functional would be u + c for any constant c
- Shift the mean of the destriped image to the mean of the striped image to obtain the appropriate solution
- ➤Multi-spectral destriping is important when we do further analysis such as computation of optical flow fields from the destriped images.
- Selecting the regularization parameter is not consistent with the available standard methods
- Need to develop a new approach to avoid the difficulty of selecting regularization parameter.
- Use Statistical inverse problem techniques to estimate samples of destriped images

-- Goal: infer *u*, the unknown state vector

Bayesian approach (Statistical Inversion) Given: form of the model $b = Au + \eta$

Express: the posterior distribution using the Bayes rule

$$p(u | b) = \frac{1}{p(b)} p(b | u) \cdot p(u)$$
normalization constant
(does not affect solutions)
$$p(b | u) \cdot p(u)$$
prior distribution
(acts as "regularization")

"likelihood" function (determined by the **model**)

Then: **estimate** solutions by sampling from p(u | b)Sample Priors using MCMC method

> A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, *Bayesian Data Analysis, Third Edition*, Chapman & Hall/CRC, 2014.

> J. Kaipio and E. Somersalo, *Statistical and Computational Inverse Problems*, Springer 2005.

